• 中国中文核心期刊
  • 中国农林核心期刊
  • 中国期刊方阵双效期刊
  • RCCSE中国核心学术期刊
  • 中国科学引文数据库(核心库)来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐胁迫下植物根系特征及其微生物的互作关系

王明睿 杨升 刘星 陈秋夏

王明睿, 杨升, 刘星, 陈秋夏. 盐胁迫下植物根系特征及其微生物的互作关系[J]. 世界林业研究, 2023, 36(4): 22-27. doi: 10.13348/j.cnki.sjlyyj.2023.0059.y
引用本文: 王明睿, 杨升, 刘星, 陈秋夏. 盐胁迫下植物根系特征及其微生物的互作关系[J]. 世界林业研究, 2023, 36(4): 22-27. doi: 10.13348/j.cnki.sjlyyj.2023.0059.y
Mingrui Wang, Sheng Yang, Xing Liu, Qiuxia Chen. Root Characteristics of Plants Under Salt Stress and Their Interactions with Microorganisms[J]. WORLD FORESTRY RESEARCH, 2023, 36(4): 22-27. doi: 10.13348/j.cnki.sjlyyj.2023.0059.y
Citation: Mingrui Wang, Sheng Yang, Xing Liu, Qiuxia Chen. Root Characteristics of Plants Under Salt Stress and Their Interactions with Microorganisms[J]. WORLD FORESTRY RESEARCH, 2023, 36(4): 22-27. doi: 10.13348/j.cnki.sjlyyj.2023.0059.y

盐胁迫下植物根系特征及其微生物的互作关系

doi: 10.13348/j.cnki.sjlyyj.2023.0059.y
基金项目: 省级重点农业企业研究院项目“滨海泥质盐碱地综合治理关键技术及工程示范”(2022C02065);温州市农业新品种选育协作组项目“林木花卉-特色优势林木花卉农业新品种选育”(2019ZX004);温州市基础性农业科技项目“浙南泥质海岸耐盐碱果桑品种筛选”(N2020004);温州市农业高新园区开放性项目“温州滨海(金海园)盐碱土改良和生态景观植被群落构建技术”(KS20210001)
详细信息
    作者简介:

    王明睿,女,硕士研究生,主要从事盐碱地土壤修复研究,E-mail:wangmr99@163.com

    通讯作者:

    陈秋夏,女,博士,研究员,主要从事森林生态研究,E-mail:yzscqx@163.com

  • 中图分类号: S718.4,S718.8

Root Characteristics of Plants Under Salt Stress and Their Interactions with Microorganisms

  • 摘要: 盐胁迫是一种常见的逆境胁迫,对植物的生长发育和土地环境都会产生一定的影响。植物与土壤中的微生物可以形成稳定的微生态系统,其中微生物可以促进植物获取养分,植物分泌物可以为微生物提供养分。结合近年来国内外根系—土壤—微生物之间相互作用的研究现状,为更好地了解并应用微生物,深入探究盐胁迫下植物根系形态特征和根系微生物的变化,有助于提高植物耐盐性,改善盐碱地土壤环境。文中就盐胁迫下植物根的各项形态和生理指标变化,植物不同种类及不同根系生态位对微生物的影响,以及耐盐菌种的筛选鉴定和开发进行总结分析,综述植物抗盐机制以及对土壤微生物的影响,并探讨盐碱环境下共生微生物在盐碱土壤改良及利用中的重要作用,以为盐碱地的开发利用提供参考。
  • [1] 毛爽, 周万里, 杨帆, 等. 植物根系应答盐碱胁迫机理研究进展[J]. 浙江农业学报,2021,33(10):1991 − 2000. doi: 10.3969/j.issn.1004-1524.2021.10.23
    [2] 朱永官, 沈仁芳. 中国土壤微生物组[M]. 浙江: 浙江大学出版社, 2022: 143 − 145.
    [3] QIN Y, DRUZHININA I S, PAN X Y, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnology Advances, 2016, 34(7):1245 − 1259. doi: 10.1016/j.biotechadv.2016.08.005
    [4] GIRVAN M S, BULLIMORE J, PRETTY J N, et al. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils[J]. Applied and Environmental Microbiology, 2003, 69(3):1800 − 1809. doi: 10.1128/AEM.69.3.1800-1809.2003
    [5] LU X H, LI R P, SHI H B, et al. Successive simulations of soil water-heat-salt transport in one whole year of agriculture after different mulching treatments and autumn irrigation[J]. Geoderma, 2019, 344(15):99 − 107.
    [6] 徐帻欣. 黄河三角洲耕地土壤盐分三维变异特征及其影响因素分析[D]. 泰安: 山东农业大学, 2022.
    [7] 宋香静. 黄河三角洲湿地不同盐分条件对柽柳根系的影响[D]. 北京: 中国林业科学研究院, 2017.
    [8] SASSE J, MARTINOIA E, NORTHEN T. Feed your friends: do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1):25 − 41. doi: 10.1016/j.tplants.2017.09.003
    [9] DURÁN P, THIERGART T, GARRIDO-OTER R, et al. Microbial interkingdom interactions in roots promote arabidopsis survival[J]. Cell, 2018, 175(4):973 − 983. doi: 10.1016/j.cell.2018.10.020
    [10] MAO P L, ZHANG Y J, CAO B H, et al. Effects of salt stress on eco-physiological characteristics in Robinia pseudoacacia based on salt-soil rhizosphere[J]. Science of the Total Environment, 2016, 568(15):118 − 123.
    [11] 宋倩云. 冬青对盐胁迫的生理响应及耐盐筛选[D]. 南京: 南京林业大学, 2020.
    [12] 代金玲, 锡林呼, 张胜利, 等. 沙枣耐盐性研究进展[J]. 世界林业研究,2019,32(2):19 − 23. doi: 10.13348/j.cnki.sjlyyj.2018.0091.y
    [13] 伍会萍, 丁振杰, 倪细炉. NaCl胁迫对长苞香蒲和芦苇生长及光合特性的影响[J]. 江苏农业科学,2018,46(24):134 − 138. doi: 10.15889/j.issn.1002-1302.2018.24.035
    [14] 古勇波, 陈方圆, 白江珊, 等. 盐碱胁迫对三江藨草幼苗功能性状的影响[J]. 应用与环境生物学报,2020,26(1):10 − 16. doi: 10.19675/j.cnki.1006-687x.2019.04028
    [15] 段贤朋, 黄伟, 吴辉, 等. 红树植物盐胁迫适应机制研究进展[J]. 湖南农业科学,2012(12):35 − 37. doi: 10.3969/j.issn.1006-060X.2012.12.014
    [16] 刘佳欣, 张会龙, 邹荣松, 等. 不同类型盐生植物适应盐胁迫的生理生长机制及Na+逆向转运研究进展[J]. 生物技术通报,2023,39(1):59 − 71. doi: 10.13560/j.cnki.biotech.bull.1985.2022-0342
    [17] HASEGAWA P M. Sodium (Na+) homeostasis and salt tolerance of plants[J]. Environmental and Experimental Botany, 2013, 2013, 92:19 − 31.
    [18] 成铁龙, 李焕勇, 武海雯, 等. 盐胁迫下4种耐盐植物渗透调节物质积累的比较[J]. 林业科学研究,2015,28(6):826 − 832. doi: 10.3969/j.issn.1001-1498.2015.06.010
    [19] SARKAR R K, BHOWMIK M, SARKAR M B, et al. Comprehensive characterization and molecular insights into the salt tolerance of a Cu, Zn-superoxide dismutase from an Indian mangrove, Avicennia marina[J]. Scientific Reports, 2022, 12(1):1745. DOI: 10.1038/s41598-022-05726-6.
    [20] 王强. 基于组学联合揭示番茄幼苗响应盐胁迫的分子机制[D]. 乌鲁木齐: 新疆农业大学, 2022.
    [21] 杨慧. 盐胁迫对菊芋根系及根际土壤主要特征影响的研究[D]. 南京: 南京农业大学, 2016.
    [22] 麻莹, 张洪嘉, 库都斯·阿布都沙拉木, 等. 盐碱胁迫对盐地碱蓬生长、有机酸等溶质积累及其生理功能的影响[J]. 草地学报,2021,29(9):1934 − 1940.
    [23] YU P, HE X M, BAER M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 2021, 7(4):481 − 99. doi: 10.1038/s41477-021-00897-y
    [24] 胡亚丽, 聂靖芝, 吴霞, 等. 水杨酸引发对红麻幼苗耐盐性的影响[J]. 中国农业科学,2022,55(14):2696 − 2708. doi: 10.3864/j.issn.0578-1752.2022.14.002
    [25] 包寒阳, 李杨, 邓先智, 等. 根系分泌物和凋落物对高寒沙化草地土壤微生物的影响[J]. 应用与环境生物学报, 2023, 29(3): 546 − 553.
    [26] OFEK-LALZAR M, SELA N, GOLDMAN-VORONOV M, et al. Niche and host-associated functional signatures of the root surface microbiome[J]. Nature Communications, 2014, 5(1):4950. DOI: 10.1038/ncomms5950.
    [27] ZHENG Y F, XU Z C, LIU H D, et al. Patterns in the microbial community of salt-tolerant plants and the functional genes associated with salt stress alleviation[J]. Microbiology Spectrum, 2021, 9(2):e0076721. DOI: 10.1128/Spectrum.00767-21.
    [28] LI H, LA S, ZHANG X, et al. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress[J]. The ISME Journal, 2021, 15(10):2865 − 2882. doi: 10.1038/s41396-021-00974-2
    [29] LIU X, LU X, ZHAO W Q, et al. The rhizosphere effect of native legume Albizzia julibrissin on coastal saline soil nutrient availability, microbial modulation, and aggregate formation[J]. Science of the Total Environment, 2022, 806(P2):150705. DOI: 10.1016/j.scitotenv.2021.150705.
    [30] ROLANDO J L, KOLTON M, SONG T, et al. The core root microbiome of Spartina alterniflora is predominated by sulfur-oxidizing and sulfate-reducing bacteria in Georgia salt marshes, USA[J]. Microbiome, 2022, 10(1):37. DOI: 10.1186/s40168-021-01187-7.
    [31] 袁远爽, 黄泽曦, 陈丽娟, 等. 根系分泌物不同组分对西南亚高山云杉人工林土壤微生物和胞外酶活性的影响[J]. 土壤通报,2022,53(5):1079 − 1087. doi: 10.19336/j.cnki.trtb.2021121701
    [32] 彭斌. 盐生植物根际微生物对根系分泌物的偏好模式[D]. 北京: 中国科学院大学, 2023.
    [33] SONG N P, PAN Y Q, KANG P, et al. Root exudates and rhizosphere soil bacterial relationships of Nitraria tangutorum are linked to k-strategists bacterial community under salt stress[J]. Frontiers in Plant Science, 2022, 13:997292. DOI: 10.3389/fpls.2022.997292.
    [34] 宁岳伟, 刘勇, 张红, 等. 煤矿矿区复垦植被类型对土壤微生物功能基因和酶活的影响[J]. 环境科学,2022,43(9):4647 − 4654. doi: 10.13227/j.hjkx.202111139
    [35] 解文科, 王小青, 李斌, 等. 植物根系分泌物研究综述[J]. 山东林业科技,2005(5):67 − 71. doi: 10.3969/j.issn.1002-2724.2005.05.042
    [36] LIU W, LU H H, WU W X, et al. Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development[J]. Soil Biology & Biochemistry, 2008, 40(2):475 − 486.
    [37] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报,2014,38(3):298 − 310.
    [38] 赵盈涵. 盐分对不同类型盐生植物根际与非根际土壤微生物群落特征的影响[D]. 泰安: 山东农业大学, 2022.
    [39] 彭日民, 彭勇, 向国红, 等. 不同入侵植物根际土壤养分、酶活性和微生物学特征[J]. 江苏农业科学,2021,49(21):217 − 223. doi: 10.15889/j.issn.1002-1302.2021.21.036
    [40] 杜滢鑫, 谢宝明, 蔡洪生, 等. 大庆盐碱地九种植物根际土壤微生物群落结构及功能多样性[J]. 生态学报,2016,36(3):740 − 747.
    [41] 刘秉儒, 张文文, 李学斌. 贺兰山不同林分凋落物微生物群落特征与影响因素[J]. 生态学报,2021,41(20):8145 − 8158.
    [42] 董爱菊, 邱慧珍, 魏茹云, 等. 类芽孢杆菌QHZ11对马铃薯黑痣病的生防效果[J]. 微生物学通报,2021,48(11):4087 − 4099. doi: 10.13344/j.microbiol.china.210120
    [43] STONE M M. Soil microbial communities and soil organic matter: composition and ecological functions in the Luquillo Critical Zone[D]. Philadelphia: University of Pennsylvania, 2014.
    [44] ZHONG Y Q W, SORENSEN P O, ZHU G Y, et al. Differential microbial assembly processes and co-occurrence networks in the soil-root continuum along an environmental gradient[J]. iMeta, 2022, 1(2):e18. DOI: 10.1002/imt2.18.
    [45] EDWARDS J A, SANTOS-MEDELLIN C, LIECHTY Z S, et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice[J]. PLoS Biology, 2018, 16(2):e2003862. DOI: 10.1371/journal.pbio.2003862.
    [46] BROWN S P, GRILLO M A, PODOWSKI J C, et al. Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula[J]. Micobiome, 2020, 8(1):139. DOI: 10.1186/s40168-020-00915-9.
    [47] WANG X L, WANG M X, XIE X G, et al. An amplification-selection model for quantified rhizosphere microbiota assembly[J]. Science Bulletin, 2020, 65(12):983 − 986. doi: 10.1016/j.scib.2020.03.005
    [48] TRIVEDI P, LEACH J E, TRINGE S G, et al. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11):607 − 621. doi: 10.1038/s41579-020-0412-1
    [49] 陈瑞蕊, 张建伟, 董洋, 等. 盐度对滨海土壤细菌多样性和群落构建过程的影响[J]. 应用生态学报,2021,32(5):1816 − 1824. doi: 10.13287/j.1001-9332.202105.039
    [50] 孙韵. 亚热带不同树种根际土壤养分及酶活性比较研究[D]. 长沙: 中南林业科技大学, 2022.
    [51] 潘雪玉. 沿海防护林树种促生、耐盐根系真菌筛选及机制初探[D]. 北京: 中国林业科学研究院, 2018.
    [52] REINHOLD-HUREK B, BÜNGER W, BURBANO C S, et al. Roots shaping their microbiome: global hotspots for microbial activity[J]. Annual Review of Phytopathology, 2015, 53(1):403 − 424. doi: 10.1146/annurev-phyto-082712-102342
    [53] 张佳音. 干旱及盐胁迫对虾夷葱与孔雀草植物形态及生理生化的影响[D]. 哈尔滨: 东北农业大学, 2019.
    [54] DASTOGEER K M G, ZAHAN M I, TAHJIB-UL-ARIF M, et al. Plant salinity tolerance conferred by arbuscular mycorrhizal fungi and associated mechanisms: a meta-analysis[J]. Frontiers in Plant Science, 2020, 11:588550. DOI: 10.3389/fpls.2020.588550.
    [55] 郑亚茹, 唐明. 丛枝菌根真菌对盐胁迫下桑树生长及光合特性的影响[J]. 蚕业科学,2020,46(6):669 − 677. doi: 10.13441/j.cnki.cykx.2020.06.002
    [56] LI F, HE X H, SUN Y Y, et al. Distinct endophytes are used by diverse plants for adaptation to karst regions[J]. Scientific Reports, 2019, 9(1):5246. DOI: 10.1038/s41598-019-41802-0.
    [57] 谈峰, 王莹, 郭聪, 等. 3个耐盐内生菌对提高杜梨耐盐能力的影响[J]. 浙江农业科学,2019,60(10):1825 − 1827. doi: 10.16178/j.issn.0528-9017.20191040
    [58] 李玉文, 田晓亮, 宋玉珍. 应用微生物肥改良盐碱地林分效果研究[J]. 林业实用技术,2010(3):3 − 5.
    [59] 张璐, 杨劲松, 姚荣江, 等. 河套灌区盐渍土壤原核生物群落特征及其潜在功能研究[J/OL]. 土壤学报. [2023-04-10].
    [60] YUE Y, SHAO T Y, LONG X H, et al. Microbiome structure and function in rhizosphere of Jerusalem artichoke grown in saline land[J]. Science of the Total Environment, 2020, 724:138259. DOI: 10.1016/j.scitotenv.2020.138259.
    [61] KING W L, KAMINSKY L M, GANNETT M, et al. Soil salinization accelerates microbiome stabilization in iterative selections for plant performance[J]. New Phytologist, 2022, 234(6):2101 − 2110. doi: 10.1111/nph.17774
    [62] 代金霞, 田平雅, 沈聪, 等. 耐盐植物根际促生菌筛选及促生效应研究[J]. 生态环境学报,2021,30(5):968 − 975. doi: 10.16258/j.cnki.1674-5906.2021.05.009
    [63] 李章雷, 刘爽, 王艳宇, 等. 5株耐盐碱促生细菌的筛选鉴定及其对红小豆的促生作用[J]. 微生物学通报,2021,48(5):1580 − 1592. doi: 10.13344/j.microbiol.china.200760
    [64] REQUENA N, PEREZ-SOLIS E, AZCÓN-AGUILAR C, et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems[J]. Applied and Environmental Microbiology, 2001, 67(2):495 − 498. doi: 10.1128/AEM.67.2.495-498.2001
    [65] 刘彩霞. 耐盐碱微生物的筛选及在盐碱土团聚体形成中的作用[D]. 南京: 南京农业大学, 2009.
  • 加载中
计量
  • 文章访问数:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-07-05
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-07-28

目录

    /

    返回文章
    返回