[1]
|
MURAT C, MELLO A, ABBÀ S, et al. Edible mycorrhizal fungi: identification, life cycle and morphogenesis[M]//VARM A. Mycorrhiza. Berlin: Springer, 2008: 707 − 732.
|
[2]
|
LUGO M A, PAGANO M C. Overview of the biodiversity, conservation, and sustainable food production with mycorrhizal fungi in South America[M]. Cham: Springer International Publishing, 2022: 1 − 23.
|
[3]
|
魏杰, 高巍, 黄晨阳. 中国菌根食用菌名录[J]. 菌物学报,2021,40(8):1938 − 1957.
|
[4]
|
冯云利, 桑兰, 吴素蕊, 等. 外生菌根菌研究概况[J]. 中国食用菌,2013,32(6):1 − 3.
|
[5]
|
QIN J, FENG B. Life cycle and phylogeography of true truffles[J]. Genes, 2022, 13(1):145. DOI: 10.3390/genes13010145.
|
[6]
|
FONTAINE L, THIFFAULT N, PARÉ D, et al. Phosphate-solubilizing bacteria isolated from ectomycorrhizal mycelium of Picea glauca are highly efficient at fluorapatite weathering[J]. Botany, 2016, 94(12):1183 − 1193. doi: 10.1139/cjb-2016-0089
|
[7]
|
OLANO J M, MARTÍNEZ-RODRIGO R, ALTELARREA J M, et al. Primary productivity and climate control mushroom yields in Mediterranean pine forests[J]. Agricultural and Forest Meteorology, 2020(5):288 − 289.
|
[8]
|
KARAVANI A, DE CÁCERES M, DE ARAGÓN J M, et al. Effect of climatic and soil moisture conditions on mushroom productivity and related ecosystem services in Mediterranean pine stands facing climate change[J]. Agricultural and Forest Meteorology, 2018, 248:432 − 440. doi: 10.1016/j.agrformet.2017.10.024
|
[9]
|
ÁGREDA T, ÁGUEDA B, OLANO J M, et al. Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming[J]. Global Change Biology, 2015, 21(9):3499 − 3510. doi: 10.1111/gcb.12960
|
[10]
|
SUN X G, FENG W Y, LI M, et al. Phenology and cultivation of Suillus bovinus, an edible mycorrhizal fungus, in a Pinus massoniana plantation[J]. Canadian Journal of Forest Research, 2019, 48(8):960 − 968.
|
[11]
|
赵燕珍, 孙学广, 冯婧玮, 等. 黔中地区马尾松林菌根食用菌多样性[J]. 菌物学报,2021,40(1):108 − 123.
|
[12]
|
张彤彤, 耿增超, 许晨阳, 等. 秦岭辛家山林区落叶松外生菌根真菌多样性[J]. 微生物学报,2018,58(3):443 − 454.
|
[13]
|
SUZ L M, BARSOUM N, BENHAM S, et al. Environmental drivers of ectomycorrhizal communities in Europe's temperate oak forests[J]. Molecular Ecology, 2014, 23(22):5628 − 5644. doi: 10.1111/mec.12947
|
[14]
|
唐超, 陈应龙, 刘润进. 菌根食用菌研究进展[J]. 菌物学报,2011,30(3):367 − 378.
|
[15]
|
杜海燕, 常顺利, 宋成程, 等. 天山雪岭云杉森林菌根真菌多样性及其影响因子[J]. 干旱区研究,2019,36(5):1194 − 1201.
|
[16]
|
冀瑞卿, 高婷婷, 李冠霖, 等. 东北红松纯林菌根外生菌根真菌群落与环境因子的相关性[J]. 菌物学报,2020,39(4):743 − 754.
|
[17]
|
ÁGREDA T, CISNEROS Ó, ÁGUEDA B, et al. Age class influence on the yield of edible fungi in a managed Mediterranean forest[J]. Mycorrhiza, 2014, 24(2):143 − 152. doi: 10.1007/s00572-013-0522-y
|
[18]
|
柯丽霞, 刘必融. 黄山地区松树林外生菌根菌资源及生态分布[J]. 应用生态学报,2005(3):455 − 458.
|
[19]
|
TOMAO A, BONET J A, MARTÍNEZ DE ARAGÓN J, et al. Is silviculture able to enhance wild forest mushroom resources?: current knowledge and future perspectives[J]. Forest Ecology and Management, 2017, 402:102 − 114. doi: 10.1016/j.foreco.2017.07.039
|
[20]
|
BACCAR M, BOUAZIZ A, DUGUE P, et al. Sustainability viewed from farmers’ perspectives in a resource-constrained environment[J]. Sustainability, 2020, 12(20):8671. DOI: 10.3390/su12208671.
|
[21]
|
杨璐敏, 严明, 华蓉, 等. 云南楚雄州林下松茸资源开发及保育现状[J]. 食药用菌,2020,28(6):393 − 397.
|
[22]
|
屈春霞, 何俊, 杨晏平, 等. 昌宁县野生干巴菌人工增产技术[J]. 林业调查规划,2010,35(5):53 − 56.
|
[23]
|
赵永昌, 柴红梅, 陈卫民. 我国野生食用菌产业发展现状与可持续发展技术探讨[J]. 食药用菌,2021,29(5):372 − 379.
|
[24]
|
单永生, 葛珍. 祁连山北麓开发菌根性食用菌探析[J]. 甘肃林业科技,2020,45(2):45 − 48. doi: 10.3969/j.issn.1006-0960.2020.02.012
|
[25]
|
ISLAM F, OHGA S. The response of fruit body formation on Tricholoma matsutake in situ condition by applying electric pulse stimulator[J]. ISRN Agronomy, 2012:1 − 6. doi: 10.5402/2012/462724
|
[26]
|
赵永昌, 柴红梅, 李树红, 等. 掘塘技术对干巴菌菌塘数量和产量的影响[J]. 西南农业学报,2005,18(6):829 − 831.
|
[27]
|
PÉREZ-MORENO J, GUERIN-LAGUETTE A, RINALDI A C, et al. Edible mycorrhizal fungi of the world: what is their role in forest sustainability, food security, biocultural conservation and climate change?[J]. Plants, People, Planet, 2021, 3(5):471 − 490. doi: 10.1002/ppp3.10199
|
[28]
|
王溢洋, 张国庆, 秦岭, 等. 块菌人工栽培现状及菌根苗培育方法的研究进展[J]. 微生物学通报,2023,50(3):1245 − 1264.
|
[29]
|
WANG R, GUERIN-LAGUETTE A, HUANG L L, et al. Mycorrhizal syntheses between Lactarius spp. section deliciosi and Pinus spp. and the effects of grazing insects in Yunnan, China[J]. Canadian Journal of Forest Research, 2019, 49(6):616 − 627. doi: 10.1139/cjfr-2018-0198
|
[30]
|
GUERIN-LAGUETTE A, CUMMINGS N, BUTLER R C, et al. Lactarius deliciosus and Pinus radiata in New Zealand: towards the development of innovative gourmet mushroom orchards[J]. Mycorrhiza, 2014, 24(7):511 − 523. doi: 10.1007/s00572-014-0570-y
|
[31]
|
TAN Z M, DANELL E, SHEN A R, et al. Successful cultivation of Lactarius hatsutake: an evaluation with molecular methods[J]. Acta Edulis Fungi, 2008, 15(3):85 − 88.
|
[32]
|
PÉREZ-MORENO J E, GUERIN-LAGUETTE A, FLORES A, et al. Mushrooms, humans and nature in a changing world perspectives from ecological, agricultural and social sciences[M]. Berlin: Springer, 2020.
|
[33]
|
ARORA D. California porcini: three new taxa, observations on their harvest, and the tragedy of no commons1[J]. Economic Botany, 2010, 62(3):356 − 375.
|
[34]
|
GUERIN-LAGUETTE A. Successes and challenges in the sustainable cultivation of edible mycorrhizal fungi-furthering the dream[J]. Mycoscience, 2021, 62(1):10 − 28. doi: 10.47371/mycosci.2020.11.007
|
[35]
|
DOMÍNGUEZ-NÚÑEZ J A, BERROCAL-LOBO M, ALBANESI A S. Ectomycorrhizal fungi: role as biofertilizers in forestry[J]. Biofertilizers for Sustainable Agriculture and Environment, 2019, 55:67 − 82.
|