[1]
|
ZIMMER K P, HØIBØ O A, VESTØL G I, et al. Variation in treatability of Scots pine sapwood: a survey of 25 different northern European locations[J]. Wood Science and Technology, 2014, 48(5):1049 − 1068. doi: 10.1007/s00226-014-0660-1
|
[2]
|
EMAMINASAB M, TARMIAN A, OLADI R, et al. Fluid permeability in poplar tension and normal wood in relation to ray and vessel properties[J]. Wood Science and Technology, 2017, 51(2):261 − 272. doi: 10.1007/s00226-016-0860-y
|
[3]
|
鲍甫成, 吕建雄. 木材渗透性可控制原理研究[J]. 林业科学,1992,28(4):336 − 342. doi: 10.3321/j.issn:1001-7488.1992.04.011
|
[4]
|
HE S, LIN L Y, FU F, et al. Microwave treatment for enhancing the liquid permeability of Chinese fir[J]. BioResources, 2014, 9(2):1924 − 1938.
|
[5]
|
AHMED S A, CHUN S K. Permeability of Tectona grandis L. as affected by wood structure[J]. Wood Science and Technology, 2011, 45(3):487 − 500. doi: 10.1007/s00226-010-0335-5
|
[6]
|
张耀丽, 夏金尉, 王军锋. 开启木材细胞通道的途径[J]. 安徽农业大学学报,2011,38(6):867 − 871. doi: 10.13610/j.cnki.1672-352x.2011.06.008
|
[7]
|
李永峰, 刘一星, 王逢瑚, 等. 木材渗透性的控制因素及改善措施[J]. 林业科学,2011,47(5):131 − 139. doi: 10.11707/j.1001-7488.20110521
|
[8]
|
翁翔, 周永东, 傅峰, 等. 微波处理木材微观构造变化及破坏机理研究进展[J]. 木材工业,2020,34(2):24 − 28. doi: 10.19455/j.mcgy.20200206
|
[9]
|
赵猛. 漆树产漆组织的结构、发育及其与生漆关系的研究[D]. 西安: 西北大学, 2013.
|
[10]
|
卢芸, 梁振烜, 付宗营, 等. 木材细胞壁纳米技术研究进展与展望[J]. 林业工程学报,2022,7(5):1 − 11.
|
[11]
|
王金满, 刘一星, 戴澄月. 吸湿范围内木材含水率对渗透性影响的研究[J]. 东北林业大学学报,1991,19(1):15 − 21. doi: 10.13759/j.cnki.dlxb.1991.01.003
|
[12]
|
史蔷, 张守攻, 吕建雄, 等. 落叶松木材改性的研究现状及发展趋势[J]. 中南林业科技大学学报,2012,32(4):210 − 215. doi: 10.3969/j.issn.1673-923X.2012.04.042
|
[13]
|
LEGGATE W, SHIRMOHAMMADI M, MCGAVIN R L, et al. Influence of wood’s anatomical and resin traits on the radial permeability of the Hybrid Pine (Pinus elliottii× Pinus caribaea) wood in Australia[J]. BioResources, 2020, 15(3):6851 − 6873. doi: 10.15376/biores.15.3.6851-6873
|
[14]
|
王金满, 刘一星, 戴澄月. 抽提物对木材渗透性影响的研究[J]. 东北林业大学学报,1991,19(3):41 − 47. doi: 10.13759/j.cnki.dlxb.1991.03.007
|
[15]
|
曹金珍. 木材保护剂分散体系及其液体渗透性研究概述[J]. 林业工程学报,2019,4(3):1 − 9.
|
[16]
|
BAGLAYEVA G, KRISHNAMOORTHY G, FRIHART C R, et al. Modeling of n-hexadecane and water sorption in wood[J]. Forest Products Journal, 2016, 66(7/8):401 − 412.
|
[17]
|
徐康, 张晓萌, 李中昊, 等. 木材低分子量树脂浸渍改性与干燥研究进展[J]. 材料导报,2022,36(6):223 − 229. doi: 10.11896/cldb.20110248
|
[18]
|
HE X, XIONG X, XIE J, et al. Effect of microwave pretreatment on permeability and drying properties of wood[J]. BioResources, 2017, 12(2):3850 − 3863.
|
[19]
|
毛逸群, 徐伟, 詹先旭. 微波预处理对杨木渗透性的影响[J]. 林产工业,2020,57(5):7 − 10,20. doi: 10.19531/j.issn1001-5299.202005002
|
[20]
|
POONIA P K, HOM S K, SIHAG K, et al. Effect of microwave treatment on longitudinal air permeability and preservative uptake characteristics of chir pine wood[J]. Maderas Ciencia y Tecnología, 2016, 18(1):125 − 132.
|
[21]
|
徐康, 吕建雄, 李贤军, 等. 基于响应曲面优化法的木材高强微波预处理工艺[J]. 林业科学,2014,50(11):109 − 114.
|
[22]
|
王振宇, 林兰英, 傅峰, 等. 木材高强微波处理及其结构失效机制研究进展[J]. 林业工程学报,2022,7(4):13 − 21.
|
[23]
|
李贤军, 傅峰, 周永东. 高强度微波预处理对桉木渗透性的影响规律[J]. 中南林业科技大学学报,2011,31(12):145 − 149. doi: 10.3969/j.issn.1673-923X.2011.12.026
|
[24]
|
LIU M L, LI C F, WANG Q W. Microstructural characteristics of larch wood treated by high-intensity microwave[J]. BioResources, 2019, 14(1):1174 − 1184.
|
[25]
|
曹梦丹, 张雪霞, 任文庭, 等. 干燥方式对毛竹细胞壁孔隙结构的影响[J]. 林业工程学报,2021,6(6):58 − 65.
|
[26]
|
张静雯, 刘洪海, 杨琳. 超临界CO2流体在木材干燥中的应用[J]. 世界林业研究,2019,32(6):37 − 42.
|
[27]
|
YANG L, LIU H H. Effect of Supercritical CO2 drying on moisture transfer and wood property of Eucalyptus urophydis[J]. Forests, 2020, 11(10):1115. DOI: 10.3390/f11101115.
|
[28]
|
DAWSON B S W, PEARSON H. Effect of supercritical CO2 dewatering followed by oven-drying of softwood and hardwood timbers[J]. Wood Science and Technology, 2017, 51(4):771 − 784. doi: 10.1007/s00226-017-0895-8
|
[29]
|
张岩, 夏先兵, 徐魁梧, 等. 超临界CO2处理两种红木的工艺研究[J]. 中国人造板,2021,28(5):17 − 21. doi: 10.3969/j.issn.1673-5064.2021.05.004
|
[30]
|
FERNANDES J, KJELLOW A W, HENRIKSEN O. Modeling and optimization of the supercritical wood impregnation process—focus on pressure and temperature[J]. The Journal of Supercritical Fluids, 2012, 66:307 − 314. doi: 10.1016/j.supflu.2012.03.003
|
[31]
|
YUSOF N S M, BABGI B, ALGHAMDI Y, et al. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications[J]. Ultrasonics Sonochemistry, 2016, 29:568 − 576. doi: 10.1016/j.ultsonch.2015.06.013
|
[32]
|
LIU Y, HU J H, GAO J M, et al. Wood veneer dyeing enhancement by ultrasonic-assisted treatment[J]. BioResources, 2015, 10(1):1198 − 1212.
|
[33]
|
JANG E S, KANG C W. An experimental study on efficient physical wood modification for enhanced permeability-focusing on ultrasonic and microwave treatments[J]. Wood Material Science & Engineering, 2022, 18(2):1 − 8.
|
[34]
|
KANG C W, JANG E S, LEE N H, et al. Air permeability and sound absorption coefficient changes from ultrasonic treatment in a cross section of Malas (Homalium foetidum)[J]. Journal of Wood Science, 2021, 67(1):1 − 5. doi: 10.1186/s10086-020-01935-7
|
[35]
|
JANG E S, KANG C W. An experimental study on pore structural changes of ultrasonic treated Korean paulownia (Paulownia coreana)[J]. Wood Science and Technology, 2022, 56(3):883 − 898. doi: 10.1007/s00226-022-01382-1
|
[36]
|
TARMIAN A, ZAHEDI TAJRISHI I, OLADI R, et al. Treatability of wood for pressure treatment processes: a literature review[J]. European Journal of Wood and Wood Products, 2020, 78(4):635 − 660. doi: 10.1007/s00107-020-01541-w
|
[37]
|
KANG C W, KOLYA H, JANG E S, et al. Steam exploded wood cell walls reveals improved gas permeability and sound absorption capability[J]. Applied Acoustics, 2021, 179:108049. DOI: 10.1016/j.apacoust.2021.108049.
|
[38]
|
KOLYA H, KANG C W. Effective changes in softwood cell walls, gas permeability and sound absorption capability of Larix kaempferi (larch) by steam explosion[J]. Wood Material Science & Engineering, 2022, 17(6):627 − 635.
|
[39]
|
WANG Y, ANDO K, HATTORI N. Changes in the anatomy of surface and liquid uptake of wood after laser incising[J]. Wood Science and Technology, 2013, 47(3):447 − 455. doi: 10.1007/s00226-012-0497-4
|