[1]
|
UYSAL M, HAVIAROVA E, ECKELMAN C A. A comparison of the cyclic durability, ease of disassembly, repair, and reuse of parts of wooden chair frames[J]. Materials& Design, 2015, 87:75 − 81.
|
[2]
|
LIKOS E, HAVIAROVA E, ECKELMAN C A, et al. Static versus cyclic load capacity of side chairs constructed with mortise and tenon joints[J]. Wood and Fiber Science, 2013, 45(2):223 − 227.
|
[3]
|
ECKELMAN C, HAVIAROVA E. Performance tests of school chairs constructed with round mortise and tenon joints[J]. Forest Products Journal, 2006, 56(3):51 − 57.
|
[4]
|
ECKELMAN C, ERDIL Y, HAVIAROVA E. School chairs for developing countries: designing for strength and durability, simplicity, and ease of construction[J]. Forest Products Journal, 2003, 53(2):63 − 70.
|
[5]
|
ERDIL Y, ECKELMAN C A, HAVIAROVA E. Design and construction of school work tables for developing countries[J]. Forest Products Journal, 2009, 59(1/2):50 − 56.
|
[6]
|
HAVIAROVA E, ECKELMAN C A, JOSCAK P. Analysis, design, and performance testing of a gate-leg table[J]. Wood and Fiber Science, 2008, 40(2):279 − 287.
|
[7]
|
HAVIAROVA E, ECKELMAN C A, ERDIL Y. Design and testing of wood school desk frames suitable for production by low technology methods from waste wood residues[J]. Forest Products Journal, 2001, 51(5):79 − 88.
|
[8]
|
ERDIL Y, KASAL A, ECKELMAN C A. Theoretical analysis and design of joints in a representative sofa frame constructed of plywood and oriented strandboard[J]. Forest Products Journal, 2008, 58(7/8):62 − 68.
|
[9]
|
PINCHEVSKA O, SEDLIAČIK J, ZAVOROTNUK O, et al. Durability of kitchen furniture made from medium-density fibreboard (MDF)[J]. Acta Facultatis Xylologiae Zvolen, 2021, 63(1):119 − 130.
|
[10]
|
GÜRAY E, CEYLAN E, KASAL A. Weight-strength optimization of wooden household chairs based on member section size[J]. Maderas-Ciencia y Tecnología, 2022, 24(31):1 − 14.
|
[11]
|
CEYLAN E, GÜRAY E, KASAL A. Structural analyses of wooden chairs by finite element method (FEM) and assessment of the cyclic loading performance in comparison with allowable design loads[J]. Maderas-Ciencia y Tecnología, 2021, 23(19):1 − 16.
|
[12]
|
KASAL A, KUSKUN T, EFE H, et al. Relationship between the static and cyclic front to back loading capacity of wood chairs[J]. BioResources, 2016, 11(4):9359 − 9372.
|
[13]
|
DEMIREL S, SEN ER R. Evaluation and comparison of control and heat treated L-shape furniture joints produced from Scotch pine and ash wood under static bending and cyclic fatigue bending loadings[J]. Maderas. Ciencia y Tecnología, 2022, 24:1 − 14.
|
[14]
|
HAVIAROVA E, ECKELMAN C A, ERDIL Y. Design and testing of environmentally friendly wood school chairs for developing countries[J]. Forest Products Journal, 2001, 51(3):58 − 64.
|
[15]
|
KASAL A, YUKSEL M, FATHOLLAHZADEH A, et al. Ultimate failure load and stiffness of screw jointed furniture cabinets constructed of particleboard and medium-density fiberboard[J]. Forest Products Journal, 2011, 61(2):155 − 160. doi: 10.13073/0015-7473-61.2.155
|
[16]
|
汤琳, 陆蕾, 关惠元. 传统攒边格角榫的改良设计与抗弯性能[J]. 林业工程学报,2022,7(4):166 − 173.
|
[17]
|
李振瑞, 初石民, 秦理哲, 等. 竹节对集成材胶合性能的影响[J]. 林业工程学报,2022,7(6):80 − 85.
|
[18]
|
何风梅, 沈隽, 鲍含伦. 板式家具结构强度设计的发展及现状[J]. 林业科学,2008,44(3):170 − 172. doi: 10.3321/j.issn:1001-7488.2008.03.032
|
[19]
|
雷文成, 张亚慧, 葛立军, 等. 结构用桉木重组木的适宜性制备工艺[J]. 林业工程学报,2022,7(6):46 − 52.
|
[20]
|
RATNASINGAM J, PERKINS M, REID H. Fatigue: it’s relevance to furniture[J]. HolzalsRoh-und Werkstoff, 1997, 55(5):297 − 300. doi: 10.1007/s001070050232
|
[21]
|
ECKELMAN C A, HAVIAROVA E, AKCAY H. Parallel-to-grain end-load capacity of round mortises in round and rectangular timbers[J]. Forest Products Journal, 2007, 57(4):66 − 71.
|
[22]
|
SASAKI Y, OYA A, NOMURA H, et al. Reaction kinetics approach in relation to the fatigue life of wood[J]. Wood Science and Technology, 2018, 52(3):809 − 820. doi: 10.1007/s00226-018-1005-2
|
[23]
|
CHEVALIER L, PLED F, ZAMBOU F, et al. Cyclic virtual test on wood furniture by Monte Carlo simulation: from compression behavior to connection modeling[J]. Mechanics & Industry, 2019, 20(6):606. DOI: 10.1051/meca/2019039.
|
[24]
|
RATNASINGAM J, IORAS F. Static and fatigue strength of oil palm wood used in furniture[J]. Journal of Applied Sciences, 2010, 10(11):986 − 990. doi: 10.3923/jas.2010.986.990
|
[25]
|
RATNASINGAM J, MUTTHIAH N. Fatigue life of oil palm wood (OPW) for furniture applications[J]. European Journal of Wood and Wood Products, 2017, 75(3):473 − 476. doi: 10.1007/s00107-016-1109-z
|
[26]
|
BAO Z, ECKELMAN C, GIBSON H. Fatigue strength and allowable design stresses for some wood composites used in furniture[J]. HolzalsRoh-und Werkstoff, 1996, 54(6):377 − 382. doi: 10.1007/s001070050204
|
[27]
|
ERDIL Y, HAVIAROVA E, ECKELMAN C A. Product engineering and performance testing in relation to strength design of furniture[J]. Wood and Fiber Science, 2004, 36(3):411 − 416.
|
[28]
|
北京市木材工业研究所, 上海市家具研究所. 家具力学性能试验第3部分:椅凳类强度和耐久性: GB/T10357.3[S]. 北京: 中国标准出版社, 2013.
|
[29]
|
General Services Administration. Performance test method for intensive use chairs: FNEW-83-269[S]. Washington: Furniture Commodity Center, 1989.
|
[30]
|
ECKELMAN C A, ZHANG J. Uses of the general services administration performance test method for upholstered furniture in the engineering of upholstered furniture frames[J]. Holz Als Roh-und Werkstoff, 1995, 53(4):261 − 267. doi: 10.1007/s001070050085
|
[31]
|
ECKELMAN C A. Theuse of performance tests and quality assurance programs in the selection of librarychairs[J]. Library Technology Reports, 1982, 18(5):483 − 571.
|
[32]
|
Technical Committee CEN/TC 207: Furniture. Furniture-strength, durability and safety-requirements for domestictables: EN12521[S]. Brussels: European Standard Committee, 2009.
|
[33]
|
Technical Committee CEN/TC 207: Furniture. Furniture-tables-test methods for the determination of stability, strength and durability: EN 1730[S]. Brussels: European Standard Committee, 2000.
|
[34]
|
北京市木材工业研究所, 上海市家具研究所. 家具力学性能试验第1部分: 桌类强度和耐久性: GB/T10357. 1[S]. 北京: 中国标准出版社, 2013.
|
[35]
|
刘晨光, 罗菊芬, 毛如佳, 等. 办公家具桌台类稳定性、强度和耐久性测试方法: GB/T 38607[S]. 北京: 中国标准出版社, 2020.
|
[36]
|
Technical Committee ISO/TC136: Furniture. Office furniture-tables and desks-test methods for the determination of stability strength and durability: ISO 21016[S]. Geneva: International Organization for Standardization, 2007.
|
[37]
|
General Services Administration. Upholstered furniture test method: FNAE80-214A[S]. Washington: Furniture Commodity Center, 1998.
|
[38]
|
ECKELMAN C A. Performance testing of side chairs[J]. HolzalsRoh-und Werkstoff, 1999, 57(4):227 − 234. doi: 10.1007/s001070050047
|
[39]
|
ECKELMAN C A. Performance testing of furniture II: a multipurpose universal structural performance test method[J]. Forest Products Journal, 1988, 38(4):13 − 18.
|
[40]
|
KUŞKUN T, KASAL A, HAVIAROVA E, et al. Relationship between static and cyclic front to back load capacity of wooden chairs, and evaluation of the strength values according to acceptable design values[J]. Wood and Fiber Science, 2018, 50(4):1 − 9.
|
[41]
|
RATNASINGAM J, IORAS F. Effect of adhesive type and glue-line thickness on the fatigue strength of mortise and tenon furniture joints[J]. European Journal of Wood and Wood Products, 2013, 71(6):819 − 821. doi: 10.1007/s00107-013-0724-1
|
[42]
|
RATNASINGAM J, IORAS F. Bending and fatigue strength of mortise and tenon furniture joints made from oil palm lumber[J]. European Journal of Wood and Wood Products, 2011, 69(4):677 − 679. doi: 10.1007/s00107-010-0501-3
|
[43]
|
BONFIELD P W, ANSELL M P. Fatigue properties of wood in tension, compression and shear[J]. Journal of Materials Science, 1991, 26(17):4765 − 4773. doi: 10.1007/BF00612416
|
[44]
|
KILIÇ H, KASAL A, KUŞKUN T, et al. Effect of tenon size on static front to back loading performance of wooden chairs in comparison with acceptable design loads[J]. BioResources, 2018, 13(1):256 − 271.
|
[45]
|
HECTORS K, DE WAELE W. Cumulative damage and life prediction models for high-cycle fatigue of metals: a review[J]. Metals, 2021, 11(2):204. DOI: 10.3390/met11020204.
|
[46]
|
CLORIUS C O, PEDERSEN M U, HOFFMEYER P, et al. An experimentally validated fatigue model for wood subjected to tension perpendicular to the grain[J]. Wood Science and Technology, 2009, 43(3):343 − 357.
|
[47]
|
BOND I, ANSELL M. Fatigue properties of jointed wood composites part II: life prediction analysis for variable amplitude loading[J]. Journal of Materials Science, 1998, 33(16):4121 − 4129. doi: 10.1023/A:1004440801331
|
[48]
|
胡文刚, 关惠元. 有限元法在实木榫接合家具结构设计中的应用[J]. 世界林业研究,2020,33(5):65 − 69. doi: 10.13348/j.cnki.sjlyyj.2020.0034.y
|
[49]
|
俞明功, 孙德林, 邹伟华, 等. 基于ANSYS的新中式实木椅力学分析[J]. 林业工程学报,2021,6(3):178 − 184.
|
[50]
|
卢峻达, 许林云, 杭晓晨, 等. 基于有限元法的BF142型刨花振动筛结构强度分析[J]. 林业工程学报,2022,7(1):145 − 152.
|