• 中国中文核心期刊
  • 中国农林核心期刊
  • 中国期刊方阵双效期刊
  • RCCSE中国核心学术期刊
  • 中国科学引文数据库(核心库)来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外负载TiO2功能化改性木材研究现状

张燕 谢海峰 刘文静

张燕, 谢海峰, 刘文静. 外负载TiO2功能化改性木材研究现状[J]. 世界林业研究, 2021, 34(6): 39-44. doi: 10.13348/j.cnki.sjlyyj.2021.0047.y
引用本文: 张燕, 谢海峰, 刘文静. 外负载TiO2功能化改性木材研究现状[J]. 世界林业研究, 2021, 34(6): 39-44. doi: 10.13348/j.cnki.sjlyyj.2021.0047.y
Yan Zhang, Haifeng Xie, Wenjing Liu. Research Status of Titanium Dioxide Functionalized Wood[J]. WORLD FORESTRY RESEARCH, 2021, 34(6): 39-44. doi: 10.13348/j.cnki.sjlyyj.2021.0047.y
Citation: Yan Zhang, Haifeng Xie, Wenjing Liu. Research Status of Titanium Dioxide Functionalized Wood[J]. WORLD FORESTRY RESEARCH, 2021, 34(6): 39-44. doi: 10.13348/j.cnki.sjlyyj.2021.0047.y

外负载TiO2功能化改性木材研究现状

doi: 10.13348/j.cnki.sjlyyj.2021.0047.y
基金项目: 国家自然科学基金(31960292);内蒙古自治区自然科学基金(2018BS03014);内蒙古农业大学校青年科技骨干基金(2017XQG-1);内蒙古农业大学高层次人才引进科研启动项目(NDYB2017-13)
详细信息
    作者简介:

    张燕,女,讲师,博士,从事木材功能改性与生物质能源方向研究,E-mail:ziyangtong@163.com

    通讯作者:

    刘文静,女,副教授,博士,从事木材学及木质炭材料方面的研究工作,E-mail:wenjing-1999@163.com

  • 中图分类号: S781.7

Research Status of Titanium Dioxide Functionalized Wood

  • 摘要: TiO2作为一种新型无机纳米改性剂,对于改善木材尺寸稳定性差、易燃、易朽、不耐虫蛀、易变色、耐老化性差等缺点,赋予其新的功能性具有良好的效果。文中主要对比了TiO2负载木材的方法,即表面涂覆、水热法、溶胶—凝胶法和超声波辅助溶胶—凝胶法的机理和优缺点;分析了TiO2改性对木材内部构造及微观结构的影响,归纳了TiO2改性对木材吸湿性和力学性能的影响;概述了TiO2在防水、阻燃、防腐、耐候、防变色、光催化和亲疏水双面功能型木材及磁吸附木材中的应用研究现状;归纳总结了TiO2在改性木材科学研究中存在的问题,并提出合理建议,以期为实际生产和科学研究提供参考。
  • [1] 宋爱军. 国内钛白粉的应用、生产工艺和市场[J]. 中国氯碱,2005,8(2):18 − 20.
    [2] WANG R, HASHIMOTO K, FUJISHIMA A, et al. Light-induced amphiphilic surface[J]. Nature, 1997, 338(5):431 − 432.
    [3] 刘扬林. 纳米TiO2薄膜自清洁和光诱导亲水性[J]. 大众科技,2009,7(3):103 − 105.
    [4] CHEN F, YANG X, XU Q. Antifungal capability of TiO2 coated film on moist wood[J]. Building and Environment, 2009, 44(7):1088 − 1093.
    [5] 程思, 符韵林. SiO2和TiO2改良木材表面性质的研究进展[J]. 江西农业学报,2018,30(5):33 − 38.
    [6] 牛晓霆, 郭伟, 王逢瑚, 等. 纳米TiO2 对传统蜂蜡烫蜡木材表面性能的影响[J]. 东北林业大学学报,2015,43(6):98 − 102. doi: 10.3969/j.issn.1000-5382.2015.06.018
    [7] TU K K, WANG X Q, KONG L Z, et al. Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood[J]. Materials & Design, 2018, 140(Feb):30 − 36.
    [8] 张玉奇, 杨旭, 肖成俊, 等. 二氧化钛花状结构在木材表面的构筑及疏水性研究[J]. 云南化工,2012,39(2):1 − 3. doi: 10.3969/j.issn.1004-275X.2012.02.001
    [9] LIU X, WAN C, LI X, et al. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Frontier of Environmental Science & Engineering, 2021, 15(4):54.
    [10] LI J, YU H, SUN Q, et al. Growth of TiO2 coating on wood surface using controlled hydrothermal method at low temperatures[J]. Applied Surface Science, 2010, 256(16):5046 − 5050. doi: 10.1016/j.apsusc.2010.03.053
    [11] MATIK M, NETO P D. Sol-gel TiO2-SiO2 films as protective coatings against corrosion of 316L stainless steel in H2SO4 solutions[J]. Journal of Applied Electrochemistry, 1995, 25:142 − 148. doi: 10.1007/BF00248171
    [12] OGISO K, SAKA S. Wood-inorganic composites prepared by sol-gel process Ⅳ: effects of chemical bonds between wood and inorganic substances on property enhancement[J]. Mokuzaigakkaishi, 1994, 40(10):1100 − 1106.
    [13] OGISO K, SAKA S. Wood-inorganic composites prepared by sol-gel process Ⅱ: effects of uItrasonic treatments on prepared of wood-inorganic composited[J]. Journal of Japan Wood Research Society, 1993, 39(3):301 − 306.
    [14] 李利芬, 吴志刚, 余丽萍. 溶胶−凝胶法功能性改良木材研究进展[J]. 世界林业研究,2019,32(2):45 − 50.
    [15] WANG B, FENG M, ZHAN H. Improvement of wood properties by impregnation with TiO2 viauitrasomic-assisted sol-gel process[J]. RSC Advances, 2014, 4(99):56355 − 56360. doi: 10.1039/C4RA04852K
    [16] JNIDO G, OHMS G, VIÖL W. Deposition of TiO2 thin films on wood substrate by an air atmospheric pressure plasma jet[J]. Coatings, 2019, 9(7):441. DOI: 10.3390/coatings9070441.
    [17] 毛丽婷. TiO2在木材改性上的研究及应用[D]. 杭州: 浙江理工大学, 2015.
    [18] HUBERT T, UNGER B, BUCKER M. Sol-gel derived TiO2 wood composites[J]. Journal of Sol-gel Science and Technology, 2010, 53:384 − 389. doi: 10.1007/s10971-009-2107-y
    [19] MIYAFUJI H, SAKA S. Na2O-SiO2 wood-inorganic composites prepared by the sol-gel process and their fire-resistant properties[J]. Journal of Wood Science, 2001, 47(6):483 − 489. doi: 10.1007/BF00767902
    [20] 武猛祥, 李俊长. 超声波辅助溶胶−凝胶法制备TiO2木材复合材料的物理性质[J]. 西南林业大学学报,2016,36(2):127 − 131.
    [21] 孙庆丰. 外负载无机纳米/木材功能型材料的低温水热共溶剂法可控制备及性能研究[D]. 哈尔滨: 东北林业大学, 2012.
    [22] SUN Q, LU Y, LIU Y. Growth of hydrophobic TiO2 on wood surface using a hydrothermal method[J]. Journal of Material Science, 2011, 46(24):7706 − 7712. doi: 10.1007/s10853-011-5750-y
    [23] 陶鑫, 陈琳, 徐伟, 等. 纳米二氧化钛改性杨木的力学性能研究[J]. 木材加工机械,2019,30(1):21 − 23, 29.
    [24] 刘思辰. 木材表面纳米TiO2疏水薄膜的构筑及其耐光老化性能研究[D]. 长沙: 中南林业科技大学, 2014.
    [25] LIAO S, ZHANG P, LI K, et al. In Situ growth of hydrophobic TiO2 on Calocedrus macrolepis Kurz wood surface using a cosolvent-controlled hydrothermal method[J]. Advanced Material Research, 2011, 150:917 − 920.
    [26] ZHENG R, TSHABALALAC M A, LIA Q, et al. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures[J]. Applied Surface Science, 2015, 328:453 − 458. doi: 10.1016/j.apsusc.2014.12.083
    [27] 林兰英. 硅溶胶强化杨木复合材的制备与性能研究[D]. 北京: 中国林业科学研究院, 2008.
    [28] SHABIR M M, HÜBERT T, SABEL M, et al. Fire retardancy of sol–gel derived titania wood-inorganic composites[J]. Journal of Material Science, 2012, 47(19):6849 − 6861. doi: 10.1007/s10853-012-6628-3
    [29] LU Y, FENG M, ZHAN H. Preparation of SiO2-wood composites by an ultrasonic-assisted sol-gel technique[J]. Cellulose, 2014, 21(6):4393 − 4403. doi: 10.1007/s10570-014-0437-6
    [30] TORUN S B, CAVDAR A D, OZDEMIR T. The synergistic effect of intumescent coating containing titanium dioxide and antimony trioxide onto spruce and alder wood species[J]. Journal of Building Engineering, 2020, 31:101407. DOI: 10.1016/j.jobe.2020.101407.
    [31] DEVI R R, MAJI T K. Effect of nanofillers on flame retardancy, chemical resistance, antibacterial properties and biodegradation of wood/styrene acrylonitrile co-polymer composites[J]. Wood Science and Technology, 2013, 47(6):1135 − 1152. doi: 10.1007/s00226-013-0563-6
    [32] 夏松华, 李黎, 李建章. 纳米TiO2光催化抗菌及降解甲醛的研究进展[J]. 木材加工机械,2007,18(2):36 − 40. doi: 10.3969/j.issn.1001-036X.2007.02.010
    [33] 杨优优, 卢凤珠, 鲍滨福, 等. 载银二氧化钛纳米抗菌剂处理竹材和马尾松的防霉和燃烧性能[J]. 浙江农林大学学报,2012,29(6):910 − 916.
    [34] 叶江华. 纳米TiO2改性薄木的研究[D]. 福州: 福建农林大学, 2006.
    [35] 毛丽婷, 汪洋, 朱丽虹. TiO2/木材复合材料的制备及其性能研究[J]. 林产工业,2015,42(7):21 − 25. doi: 10.3969/j.issn.1001-5299.2015.07.006
    [36] 黄素涌, 李凯夫. 溶胶−凝胶法制备杉木/TiO2复合材料及其抗菌性的研究[J]. 林产工业,2010,37(5):21 − 23. doi: 10.3969/j.issn.1001-5299.2010.05.006
    [37] 黄素涌, 李凯夫, 佘祥威. 杉木/TiO2复合材料的抗菌性[J]. 林业科学,2011,47(1):181 − 184. doi: 10.11707/j.1001-7488.20110128
    [38] FILPO G D, PALERMO A M, RACHIELE F, et al. Preventing fungal growth in wood by titanium dioxide nanoparticles[J]. International Biodeterioration & Biodegradation, 2013, 85(7):217 − 222.
    [39] PÁNEK M, ŠIMUNKOVÁ K, NOVÁK D, et al. Caffeine and TiO2 nanoparticles treatment of spruce and beech wood for increasing transparent coating resistance against UV-radiation and mould attacks[J]. Coatings, 2020, 10(12):1141. DOI: 10.3390/coatings10121141.
    [40] HERNANDEZ V, MORALES C, SAGREDO N, et al. Radical species production and color change behavior of wood surfaces treated with suppressed photoactivity and photoactive TiO2 nanoparticles[J]. Coatings, 2020, 10(11):1033. DOI: 10.3390/coatings10111033.
    [41] MAKOTO O, HIDETO T. Improvement of coated wood surface by addition of TiO2 micro particulate and PEGMA to clear paint[J]. Toso Kogaku, 2002, 37(10):340 − 349.
    [42] SUN Q, LU Y, ZHANG H, et al. Hydrothermal fabrication of rutile TiO2 submicrospheres on wood surface: an efficient method to prepare UV-protective wood[J]. Materials Chemistry and Physics, 2012, 133(1):253 − 258. doi: 10.1016/j.matchemphys.2012.01.018
    [43] LIU W, WANG B, ZHANG M. Synthesizing C-N-P-tridoped TiO2 in a Salix psammophila-activated carbon body to enhance its regeneration performance[J]. New Journal of Chemistry, 2021, 44(41):17871 − 17881.
    [44] LIU W, LANG Z. The structure and self-regeneration performance of Salix psammophila-activated carbon modified by Ag and N co-doped TiO2[J]. RSC Advances, 2020, 10:3844. DOI: 10.1039/c9ra10305h.
    [45] 李晶, 张宏志, 郝治雷, 等. 基于木材模板的二氧化钛制备及其降解甲醛的研究[J]. 林业科技,2018,43(3):25 − 29. doi: 10.3969/j.issn.1001-9499.2018.03.007
    [46] 高丽坤, 李坚. 木材基银钛复合薄膜的制备及其可见光降解甲醛[J]. 科技导报,2016,34(19):127 − 131.
    [47] RAO X, LIU Y, FU Y et al. Formation and properties of polyelectrolytes/TiO2 composite coating on wood surfaces through layer-by-layer assembly method[J]. Holzforschung, 2015, 70(4):361 − 367.
    [48] 董悦, 袁炳楠, 姬晓迪, 等. 木质基g-C3N4 /TiO2复合涂层的制备及光催化性能表征[J]. 北京林业大学学报,2017,39(12):112 − 117.
    [49] DING Y, TU K, BURGERT I, et al. Janus wood membranes for autonomous water transport and fog collection[J]. Journal of Material Chemistry A, 2020, 8(42):22001 − 22008. doi: 10.1039/D0TA07544B
    [50] EL-SHEIKH A H, SHUDAYFAT A M, FASFOUS I I. Preparation of magnetic biosorbents based on cypress wood that was pretreated by heating or TiO2 deposition[J]. Industrial Crops and Products, 2019, 129:105 − 113.
  • 加载中
计量
  • 文章访问数:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-06-10
  • 网络出版日期:  2021-06-30
  • 刊出日期:  2021-11-25

目录

    /

    返回文章
    返回