• 中国中文核心期刊
  • 中国农林核心期刊
  • 中国期刊方阵双效期刊
  • RCCSE中国核心学术期刊
  • 中国科学引文数据库(核心库)来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木本植物树皮研究进展

聂稳 江泽平 刘逸夫 王军辉 王亚 贾子瑞

聂稳, 江泽平, 刘逸夫, 王军辉, 王亚, 贾子瑞. 木本植物树皮研究进展[J]. 世界林业研究, 2021, 34(4): 14-19. doi: 10.13348/j.cnki.sjlyyj.2021.0015.y
引用本文: 聂稳, 江泽平, 刘逸夫, 王军辉, 王亚, 贾子瑞. 木本植物树皮研究进展[J]. 世界林业研究, 2021, 34(4): 14-19. doi: 10.13348/j.cnki.sjlyyj.2021.0015.y
Wen Nie, Zeping Jiang, Yifu Liu, Junhui Wang, Ya Wang, Zirui Jia. Research Progress in Bark of Woody Plants[J]. WORLD FORESTRY RESEARCH, 2021, 34(4): 14-19. doi: 10.13348/j.cnki.sjlyyj.2021.0015.y
Citation: Wen Nie, Zeping Jiang, Yifu Liu, Junhui Wang, Ya Wang, Zirui Jia. Research Progress in Bark of Woody Plants[J]. WORLD FORESTRY RESEARCH, 2021, 34(4): 14-19. doi: 10.13348/j.cnki.sjlyyj.2021.0015.y

木本植物树皮研究进展

doi: 10.13348/j.cnki.sjlyyj.2021.0015.y
基金项目: 国家自然基金青年项目“红皮云杉谱系地理学及其第四纪冰期避难所研究”(31500540)
详细信息
    作者简介:

    聂稳,男,硕士研究生,研究方向为树木生理生态,E-mail:wenniecaf@163.com

    通讯作者:

    贾子瑞,女,博士,助理研究员,主要从事云杉遗传改良研究,E-mail:jiazirui646@163.com

  • 中图分类号: S718.4

Research Progress in Bark of Woody Plants

  • 摘要: 树皮是指木本植物维管形成层以外的所有组织。树皮作为木本植物的一部分,其结构一般比木质部更加复杂。目前,对木本植物树皮的研究已取得了一定的成果。文中在简述木本植物树皮形态结构的基础上,阐述了树皮的理化性质及其防护功能,以及树皮厚度模型及其应用;通过介绍树皮的理化性质,分析了树皮的生理生态功能研究进展;重点概述了不同木本植物树皮中基因表达调控机制;剖析了树皮研究过程中存在的问题,并展望了今后的研究重点,以期为进一步了解树皮的多功能性提供参考,同时为将来的树皮生态学研究提供借鉴。
  • 图  1  树皮横截面解剖

    注:改编自文献[7]。

  • [1] EVERT R F. Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development[M].3rd ed.Hoboken, New Jersey: John Wiley & Sons, 2006.
    [2] PFAUTSCH S, HÖLTTÄ T, MENCUCCINI M. Hydraulic functioning of tree stems: fusing ray anatomy, radial transfer and capacitance[J]. Tree Physiology, 2015, 35(7):706 − 722. doi: 10.1093/treephys/tpv058
    [3] 赵泾峰, 宋孝周, 冯德君. 栓皮栎软木研究进展[J]. 西北农林科技大学学报(自然科学版),2019,47(4):25 − 31.
    [4] 秦世立, 马冬梅. 树皮形态与解剖构造的研究[J]. 辽宁林业科技,2002(4):11 − 13. doi: 10.3969/j.issn.1001-1714.2002.04.005
    [5] 赵杰军, 陈晓鸣, 王自力, 等. 白蜡虫七种寄主植物枝条树皮比较解剖研究[J]. 广西植物,2012,32(1):40 − 45. doi: 10.3969/j.issn.1000-3142.2012.01.010
    [6] 石江涛, 刘海冲, 彭俊懿, 等. 构树次生韧皮部细胞组成与形态的季节性变化[J]. 西北林学院学报,2019,34(5):202 − 207. doi: 10.3969/j.issn.1001-7461.2019.05.31
    [7] ROSELL J A. Bark in woody plants: understanding the diversity of a multifunctional structure[J]. Integrative and Comparative Biology, 2019, 59(3):535 − 547. doi: 10.1093/icb/icz057
    [8] ROSELL J A, OLSON M E. The evolution of bark mechanics and storage across habitats in a clade of tropical trees[J]. Botanical Society of America, 2014, 101(5):764 − 777.
    [9] ROSELL J A, CASTORENA M, LAWS C, et al. Bark ecology of twigs vs main stems: functional traits across 85 species of angiosperms[J]. Oecologia, 2015, 178(4):1033 − 1043. doi: 10.1007/s00442-015-3307-5
    [10] MICHALETZ S T, JOHNSON E A, TYREE M T. Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: cavitation and deformation of xylem in forest fires[J]. New Phytologist, 2012, 194(1):254 − 263. doi: 10.1111/j.1469-8137.2011.04021.x
    [11] BÄR A, NARDINI A, MAYR S. Post-fire effects in xylem hydraulics of Picea abies, Pinus sylvestris and Fagus sylvatica[J]. New Phytologist, 2018, 217(4):1484 − 1493. doi: 10.1111/nph.14916
    [12] SHEPPARD J P, MORHART C, SPIECKER H. Bark surface temperature measurements on wild cherry (Prunus avium) grown within an agroforestry system[J]. Silva Fennica, 2016, 50(3):1313. DOI: 10.14214/sf.1313.
    [13] ILEK A, KUCZA J, MORKISZ K. Hydrological properties of bark of selected forest tree species: part 2: interspecific variability of bark water storage capacity[J]. Folia Forestalia Polonica, 2017, 59(2):110 − 122. doi: 10.1515/ffp-2017-0011
    [14] ANNA I, KUCZA J. Hydrological properties of bark of selected forest tree species: part I: the coefficient of development of the interception surface of bark[J]. Trees, 2014, 28(3):831 − 839. doi: 10.1007/s00468-014-0995-0
    [15] SEKI K, ORIHASHI K, SAITO N, et al. Relationship between the composition and distribution of nutritional substances, secondary metabolites, and internal secretory structures in the bark tissues of Larix gmelinii var. japonica, L. kaempferi, and their F1 hybrid and susceptibility to vole herbivory[J]. Journal of Forest Research, 2019, 24(5):292 − 302. doi: 10.1080/13416979.2019.1658279
    [16] 梅闯, 闫鹏, 艾沙江·买买提, 等. 新疆野苹果(Malus sieversii)受苹小吉丁虫危害程度与树皮厚度、径阶的关系[J]. 中国农业科技导报,2016,18(4):24 − 30.
    [17] 苓建强. 白蜡属不同树种对花曲柳窄吉丁的抗性机制[D]. 北京: 北京林业大学, 2011.
    [18] 李淑玲, 刘美青, 李继东, 等. 毛白杨无性系树皮有机物质含量与抗性关系的研究[J]. 河南农业大学学报,2001(3):216 − 220. doi: 10.3969/j.issn.1000-2340.2001.03.006
    [19] 妥彬. 浙东森林木本植物树皮性状及其功能策略[D]. 上海: 华东师范大学, 2019.
    [20] PFANZ H. Bark photosynthesis[J]. Trees, 2008, 22(2):137 − 138. doi: 10.1007/s00468-007-0196-1
    [21] TESKEY R O, SAVEYN A, STEPPE K, et al. Origin, fate and significance of CO2 in tree stems[J]. New Phytologist, 2008, 177(1):17 − 32. doi: 10.1111/j.1469-8137.2007.02286.x
    [22] CERNUSAK L A, HUTLEY L B. Stable isotopes reveal the contribution of corticular photosynthesis to growth in branches of Eucalyptus miniata[J]. Plant Physiology, 2011, 155(1):515 − 523. doi: 10.1104/pp.110.163337
    [23] WITTMANN C, PFANZ H. More than just CO2-recycling: corticular photosynthesis as a mechanism to reduce the risk of an energy crisis induced by low oxygen[J]. New Phytologist, 2018, 219(2):551 − 564. doi: 10.1111/nph.15198
    [24] CERNUSAK L A, CHEESMAN A W. The benefits of recycling: how photosynthetic bark can increase drought tolerance[J]. New Phytologist, 2015, 208(4):995 − 997. doi: 10.1111/nph.13723
    [25] VANDEGEHUCHTE M W, BLOEMEN J, VERGEYNST L L, et al. Woody tissue photosynthesis in trees: salve on the wounds of drought?[J]. New Phytologist, 2015, 208(4):998 − 1002. doi: 10.1111/nph.13599
    [26] ZHANG H, WANG C, WANG X. Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species[J]. Trees, 2014, 28(1):77 − 89. doi: 10.1007/s00468-013-0931-8
    [27] ANDEREGG W R L, CALLAWAY E S. Infestation and hydraulic consequences of induced carbon starvation[J]. Plant Physiology, 2012, 159(4):1866 − 1874. doi: 10.1104/pp.112.198424
    [28] YANG Q, ZHANG W, LI R, et al. Different responses of non-structural carbohydrates in aboveground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings[J]. Trees, 2016, 30(5):1863 − 1871. doi: 10.1007/s00468-016-1419-0
    [29] NARDINI A, GULLO M A L, SALLEO S. Refilling embolized xylem conduits: is it a matter of phloem unloading?[J]. Plant Science, 2011, 180(4):604 − 611. doi: 10.1016/j.plantsci.2010.12.011
    [30] 暴家兵, 齐果萍, 刘晋仙, 等. 华北落叶松树皮表面细菌群落多样性及其分布格局[J]. 微生物学报,2020,60(1):135 − 147.
    [31] 卢世香. 树皮结构和HblMYC1基因与橡胶树产量相关性研究[D]. 海口: 海南大学, 2010.
    [32] 郭秀丽. 橡胶树HbGRX基因的克隆及其在死皮病发生过程中的功能分析[D]. 海口: 海南大学, 2017.
    [33] ARNERUP J, LIND M, OLSON Å, et al. The pathogenic white-rot fungus Heterobasidion parviporum triggers non-specific defence responses in the bark of Norway spruce[J]. Tree Physiology, 2011, 31(11):1262 − 1272. doi: 10.1093/treephys/tpr113
    [34] RAINS M K, SILVA N D G D, MOLINA I. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues[J]. Tree Physiology, 2018, 38(3):340 − 361. doi: 10.1093/treephys/tpx060
    [35] 王晓林, 蔡可旺, 姜立春. 落叶松树皮厚度变化规律的研究[J]. 森林工程,2011,27(2):8 − 11. doi: 10.3969/j.issn.1001-005X.2011.02.003
    [36] 贾炜玮, 梁玉钊, 李凤日. 落叶松人工林树皮厚度预测模型[J]. 南京林业大学学报(自然科学版),2019,43(6):97 − 104.
    [37] 严铭海, 方静仪, 李睿宇, 等. 福州市湿地松人工林树皮厚度模型研究[J]. 西南林业大学学报(自然科学),2018,38(5):124 − 131.
    [38] 唐诚, 王春胜, 庞圣江, 等. 西南桦人工林树皮厚度模型模拟[J]. 林业科学,2017,53(7):85 − 93. doi: 10.11707/j.1001-7488.20170709
    [39] LAASASENAHO J, MELKAS T, ALDEN S. Modelling bark thickness of Picea abies with taper curves[J]. Forest Ecology and Management, 2005, 206(1/2/3):35 − 47.
    [40] WILLIAMS V L, WITKOWSKI E T F, BALKWILL K. Relationship between bark thickness and diameter at breast height for six tree species used medicinally in South Africa[J]. South African Journal of Botany, 2007, 73(3):449 − 465. doi: 10.1016/j.sajb.2007.04.001
    [41] BROOKS J R, JIANG L. Comparison of prediction equations for estimating inside bark diameters for yellow-poplar, red maple, and red pine in West Virginia[J]. Northern Journal of Applied Forestry, 2009, 26(1):5 − 8. doi: 10.1093/njaf/26.1.5
    [42] MAGUIRE D A, HANN D W. Bark thickness and bark volume in southwestern Oregon Douglas-fir[J]. Western Journal of Applied Forestry, 1990, 5(1):5 − 8. doi: 10.1093/wjaf/5.1.5
    [43] LI R, WEISKITTEL A R. Estimating and predicting bark thickness for seven conifer species in the Acadian region of North America using a mixed-effects modeling approach: comparison of model forms and subsampling strategies[J]. European Journal of Forest Research, 2011, 130(2):219 − 233. doi: 10.1007/s10342-010-0423-y
    [44] KOHNLE U, HEIN S, SORENSEN F C, et al. Effects of seed source origin on bark thickness of Douglas-fir (Pseudotsuga menziesii) growing in southwestern Germany[J]. Canadian Journal of Forest Research, 2012, 42(2):382 − 399. doi: 10.1139/x11-191
    [45] ROSELL J A, OLSON M E, ANFODILLO T, et al. Exploring the bark thickness–stem diameter relationship: clues from lianas, successive cambia, monocots and gymnosperms[J]. New Phytologist, 2017, 215(2):569 − 581. doi: 10.1111/nph.14628
    [46] 田地, 严正兵, 方精云. 植物化学计量学: 一个方兴未艾的生态学研究方向[J]. 自然杂志,2018,40(4):235 − 241. doi: 10.3969/j.issn.0253-9608.2018.04.001
    [47] JIANG Y, ZHANG C X, CHEN R, et al. Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2019, 116(47):23390 − 23397.
  • 加载中
计量
  • 文章访问数:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-21
  • 修回日期:  2021-03-24
  • 网络出版日期:  2021-04-13
  • 刊出日期:  2021-07-29

目录

    /

    返回文章
    返回