• 中国中文核心期刊
  • 中国农林核心期刊
  • 中国期刊方阵双效期刊
  • RCCSE中国核心学术期刊
  • 中国科学引文数据库(核心库)来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

森林土壤呼吸对降雨脉冲的响应研究进展

尚晴 程露 王忠伟 刘彦春

尚晴, 程露, 王忠伟, 刘彦春. 森林土壤呼吸对降雨脉冲的响应研究进展[J]. 世界林业研究, 2019, 32(4): 18-22. doi: 10.13348/j.cnki.sjlyyj.2019.0044.y
引用本文: 尚晴, 程露, 王忠伟, 刘彦春. 森林土壤呼吸对降雨脉冲的响应研究进展[J]. 世界林业研究, 2019, 32(4): 18-22. doi: 10.13348/j.cnki.sjlyyj.2019.0044.y
Qing Shang, Lu Cheng, Zhongwei Wang, Yanchun Liu. Research on the Response of Soil Respiration to Precipitation Pulse in Forests[J]. WORLD FORESTRY RESEARCH, 2019, 32(4): 18-22. doi: 10.13348/j.cnki.sjlyyj.2019.0044.y
Citation: Qing Shang, Lu Cheng, Zhongwei Wang, Yanchun Liu. Research on the Response of Soil Respiration to Precipitation Pulse in Forests[J]. WORLD FORESTRY RESEARCH, 2019, 32(4): 18-22. doi: 10.13348/j.cnki.sjlyyj.2019.0044.y

森林土壤呼吸对降雨脉冲的响应研究进展

doi: 10.13348/j.cnki.sjlyyj.2019.0044.y
基金项目: 

国家自然科学基金“不同干旱强度下气候过渡带典型森林土壤呼吸各组分对降雨脉冲的响应” 31600379

中国博士后科学基金第11批特别资助项目“气候过渡带典型森林土壤碳排放对降雨脉冲的季节性响应” 2018T110722

河南省高等学校重点研究项目“气候过渡带典型森林土壤碳排放对林冠模拟氮沉降和增雨的响应” 17A180001

详细信息
    作者简介:

    尚晴, 女, 讲师, 主要从事生态旅游学研究, E-mail:249479604@qq.com

    通讯作者:

    刘彦春, 副教授, 硕导, 主要从事森林生态系统碳循环研究, E-mail:yanchunliu@henu.edu.cn

  • 中图分类号: S714.2

Research on the Response of Soil Respiration to Precipitation Pulse in Forests

  • 摘要: 森林生态系统的土壤碳储量是陆地生态系统碳库的重要组成部分。土壤呼吸则是土壤碳库参与陆地碳循环的主要方式,其受到诸多生物和非生物因子的综合调控。偶发性降雨会引起森林土壤湿度的瞬间增加,进而导致土壤呼吸速率的快速提高。文中介绍了森林土壤呼吸及其组分,综述了降雨脉冲效应的特征和诱导机制(包括物理替代机制、微生物代谢机制、土壤养分限制机制及光化学调控机制等),分析了当前降雨脉冲研究存在的不足并展望了未来的研究重点,认为森林生态系统是未来开展降雨脉冲效应研究的重要方向,探究森林土壤呼吸不同组分对降雨脉冲的响应差异与机制也是潜在的重要研究方向。
  • [1] KARHU K, AUFFRET M D, DUNGAIT J A, et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response[J]. Nature, 2014, 513(7516):81-84. doi: 10.1038/nature13604
    [2] REICHSTEIN M, BEER C. Soil respiration across scales:the importance of a model-data integration framework for data interpretation[J]. Journal of Plant Nutrition and Soil Science, 2008, 171(3):344-354. doi: 10.1002/jpln.200700075
    [3] MA J, ZHENG X J, LI Y. The response of CO2 flux to rain pulses at a saline desert[J]. Hydrological Processes, 2012, 26(26):4029-4037. doi: 10.1002/hyp.9204
    [4] FAN Z, NEFF J C, HANAN N P. Modeling pulsed soil respiration in an African savanna ecosystem[J]. Agricultural and Forest Meteorology, 2015, 200:282-292. doi: 10.1016/j.agrformet.2014.10.009
    [5] BIRCH H F. Mineralisation of plant nitrogen following alternate wet and dry conditions[J]. Plant and Soil, 1964, 20(1):43-49. doi: 10.1007/BF01378096
    [6] LEE M S, NAKANE K, NAKATSUBO T, et al. Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest[J]. Ecological Research, 2002, 17(3):401-409. doi: 10.1046/j.1440-1703.2002.00498.x
    [7] FIERER N, SCHIMEL J P. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations[J]. Soil Biology and Biochemistry, 2002, 34(6):777-787. doi: 10.1016/S0038-0717(02)00007-X
    [8] DIXON R K, SOLOMON A M, BROWN S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144):185-190. doi: 10.1126/science.263.5144.185
    [9] UNGER S, MÁGUAS C, PEREIRA J S, et al. The influence of precipitation pulses on soil respiration-assessing the "Birch effect" by stable carbon isotopes[J]. Soil Biology and Biochemistry, 2010, 42(10):1800-1810. doi: 10.1016/j.soilbio.2010.06.019
    [10] HANSON P J, O'NEILL E G, CHAMBERS M L S, et al. North American temperate deciduous forest responses to changing precipitation regimes[M]. New York:Springer, 2003:163-189.
    [11] LU H, LIU S, WANG H, et al. Experimental throughfall reduction barely affects soil carbon dynamics in a warm-temperate oak forest, central China[J]. Scientific Reports, 2017, 7(1):15099. DOI: 10.1038/s41598-017-15157-3.
    [12] TAYLOR A, LAI C T, HOPKINS F, et al. Radiocarbon-based partitioning of soil respiration in an old-growth coniferous forest[J]. Ecosystems, 2015, 18(3):459-470. doi: 10.1007/s10021-014-9839-4
    [13] SHI B, GAO W, JIN G. Effects on rhizospheric and heterotrophic respiration of conversion from primary forest to secondary forest and plantations in Northeast China[J]. European Journal of Soil Biology, 2015, 66:11-18. doi: 10.1016/j.ejsobi.2014.11.003
    [14] TANG J, BALDOCCHI D D, XU L. Tree photosynthesis modulates soil respiration on a diurnal time scale[J]. Global Change Biology, 2005, 11(8):1298-1304. doi: 10.1111/j.1365-2486.2005.00978.x
    [15] 庄静静, 张劲松, 孟平, 等.华北低山丘陵区土壤CH4通量对脉冲降雨的响应[J].东北林业大学学报, 2015, 43(10):72-78. doi: 10.3969/j.issn.1000-5382.2015.10.015
    [16] MIAO R, QIU X, GUO M, et al. Accuracy of space-for-time substitution for vegetation state prediction following shrub restoration[J]. Journal of Plant Ecology, 2018, 11(2):208-217. http://cn.bing.com/academic/profile?id=51b832a709504ddecf830cd8179fd6bf&encoded=0&v=paper_preview&mkt=zh-cn
    [17] 李一强, 王义东, 王辉民, 等.脉冲降雨对土壤异养呼吸影响机制的模拟研究[J].天津师范大学学报(自然科学版), 2016, 36(5):39-45. doi: 10.3969/j.issn.1671-1114.2016.05.010
    [18] JARVIS P, REY A, PETSIKOS C, et al. Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission:the "Birch effect"[J]. Tree Physiology, 2007, 27(7):929-940. doi: 10.1093/treephys/27.7.929
    [19] PATRICK L, CABLE J, POTTS D. Effects of an increase in summer precipitation on leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas[J]. Oecologia, 2007, 151(4):704-718. doi: 10.1007/s00442-006-0621-y
    [20] THOMEY M L, COLLINS S L, VARGAS R. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland[J]. Global Change Biology, 2011, 17(4):1505-1515. doi: 10.1111/j.1365-2486.2010.02363.x
    [21] XU L K, BALDOCCHI D D, TANG J W. How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature[J]. Global Biogeochemical Cycles, 2004, 18(4). DOI: 10.1029/2004GB002281.
    [22] SONG W, CHEN S, WU B, et al. Simulated rain addition modifies diurnal patterns and temperature sensitivities of autotrophic and heterotrophic soil respiration in an arid desert ecosystem[J]. Soil Biology and Biochemistry, 2015, 82(82):143-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ed8c88883e431e852e1f53bc81f0d17
    [23] 贾晓红, 辜晨, 吴波, 等.干旱沙区生物土壤结皮覆盖土壤CO2通量对脉冲式降雨的响应[J].中国沙漠, 2016, 36(2):423-432. http://d.old.wanfangdata.com.cn/Conference/9337590
    [24] PLACELLA S A, BRODIE E L, FIRESTONE M K. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups[J]. Proceedings of the National Academy of Sciences, 2012, 109(27):10931-10936. doi: 10.1073/pnas.1204306109
    [25] CABLE J M, HUXMAN T E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts[J]. Oecologia, 2004, 141(2):317-324. doi: 10.1007/s00442-003-1461-7
    [26] INGLIMA I, ALBERTI G, BERTOLINI T, et al. Precipitation pulses enhance respiration of Mediterranean ecosystems:the balance between organic and inorganic components of increased soil CO2 efflux[J]. Global Change Biology, 2009, 15(5):1289-1301. doi: 10.1111/j.1365-2486.2008.01793.x
    [27] KUZYAKOV Y. Sources of CO2 efflux from soil and review of partitioning methods[J]. Soil Biology and Biochemistry, 2006, 38(3):425-448. doi: 10.1016/j.soilbio.2005.08.020
    [28] GRIFFITHS E, BIRCH H F. Microbiological changes in freshly moistened soil[J]. Nature, 1961, 189(4762):424-424. doi: 10.1038-189424a0/
    [29] DENEF K, SIX J, BOSSUYT H, et al. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics[J]. Soil Biology and Biochemistry, 2001, 33(12):1599-1611. http://cn.bing.com/academic/profile?id=4be4ed7b96eb2d6d958121e2b9f761b3&encoded=0&v=paper_preview&mkt=zh-cn
    [30] BOTTNER P.Response of microbial biomass to alternate moist and dry conditions in a soil incubatedwith 14C and 15N labelled plant material[J]. Soil Biology and Biochemistry, 1985, 17(3):329-337. doi: 10.1016/0038-0717(85)90070-7
    [31] YAN L, CHEN S, XIA J. Precipitation regime shift enhanced the rain pulse effect on soil respiration in a semi-arid steppe[J]. Plos One, 2014, 9(8):e104217. DOI: 10.1371/journal.pone.0104217.
    [32] 赵蓉, 李小军, 赵洋, 等.固沙植被区两类结皮斑块土壤呼吸对降雨脉冲的响应[J].中国沙漠, 2015, 35(2):393-399. http://d.old.wanfangdata.com.cn/Periodical/zgsm201502018
    [33] BRANDT L A, BOHNET C, KING J Y. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems[J]. Journal of Geophysical Research:Biogeosciences, 2015, 114:G02004. DOI: 10.1029/2008JG000772.
    [34] MCINTYRE R E, ADAMS M A, FORD D J. Rewetting and litter addition influence mineralisation and microbial communities in soils from a semi-arid intermittent stream[J]. Soil Biology and Biochemistry, 2009, 41(1):92-101. doi: 10.1016/j.soilbio.2008.09.021
    [35] RUTLEDGE S, CAMPBELL D I, BALDOCCHI D. Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter[J]. Global Change Biology, 2010, 16(11):3065-3074. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2486.2009.02149.x
    [36] HENRY H A, BRIZGYS K, FIELD C B. Litter decomposition in a California annual grassland:interactions between photodegradation and litter layer thickness[J]. Ecosystems, 2008, 11(4):545-554. doi: 10.1007/s10021-008-9141-4
  • 加载中
计量
  • 文章访问数:  1005
  • HTML全文浏览量:  2
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 修回日期:  2019-05-10
  • 网络出版日期:  2019-05-22
  • 刊出日期:  2019-07-28

目录

    /

    返回文章
    返回