• 中国中文核心期刊
  • 中国农林核心期刊
  • 中国期刊方阵双效期刊
  • RCCSE中国核心学术期刊
  • 中国科学引文数据库(核心库)来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹纤维环氧树脂复合材料孔隙特征及其表征方法

张文福 程海涛 王戈 顾少华

张文福, 程海涛, 王戈, 顾少华. 竹纤维环氧树脂复合材料孔隙特征及其表征方法[J]. 世界林业研究, 2019, 32(3): 55-60. doi: 10.13348/j.cnki.sjlyyj.2019.0031.y
引用本文: 张文福, 程海涛, 王戈, 顾少华. 竹纤维环氧树脂复合材料孔隙特征及其表征方法[J]. 世界林业研究, 2019, 32(3): 55-60. doi: 10.13348/j.cnki.sjlyyj.2019.0031.y
Wenfu Zhang, Haitao Cheng, Ge Wang, Shaohua Gu. Void Characteristics and Characterization of Bamboo Fiber/Epoxy Composites[J]. WORLD FORESTRY RESEARCH, 2019, 32(3): 55-60. doi: 10.13348/j.cnki.sjlyyj.2019.0031.y
Citation: Wenfu Zhang, Haitao Cheng, Ge Wang, Shaohua Gu. Void Characteristics and Characterization of Bamboo Fiber/Epoxy Composites[J]. WORLD FORESTRY RESEARCH, 2019, 32(3): 55-60. doi: 10.13348/j.cnki.sjlyyj.2019.0031.y

竹纤维环氧树脂复合材料孔隙特征及其表征方法

doi: 10.13348/j.cnki.sjlyyj.2019.0031.y
基金项目: 

国家重点研发计划 2017YFD0600802

国际竹藤中心基本科研业务费专项资金 1632018015

浙江省基础公益研究计划项目 LGG18C160001

详细信息
    作者简介:

    张文福(1987-), 男, 在职博士生, 研究方向:竹纤维复合材料加工, E-mail:zhangwenfu542697@163.com

    通讯作者:

    王戈, 研究员/博导, 研究方向:竹材加工与利用, E-mail:wangge@icbr.ac.cn

  • 中图分类号: TS653

Void Characteristics and Characterization of Bamboo Fiber/Epoxy Composites

  • 摘要: 孔隙是影响环氧树脂基复合材料性能的重要因素之一。以多级孔隙结构竹纤维为增强材料的竹纤维环氧树脂复合材料(BFEC)存在多态性孔隙结构,复合材料性能与孔隙特征存在复杂的关联性,对孔隙进行深入系统地研究具有非常深远的意义。文中分析了BFEC复合材料的孔隙类型、形成和控制方法以及孔隙特征对复合材料性能的影响,对孔隙常规表征方法和新技术手段进行了分类归纳,总结了BFEC复合材料孔隙研究中存在的问题,并提出未来研究方向,以期为调控BFEC复合材料孔隙特征以及揭示孔隙对复合材料的影响提供参考。
  • 图  1  BFEC复合材料Micro-CT图

  • [1] LIESE W.Research on bamboo[J].Wood Science and Technology, 1987, 21(3):189-209. http://d.old.wanfangdata.com.cn/Periodical/gyjz201806030
    [2] DIXON P G, GIBSON L J.The structure and mechanics of Moso bamboo material[J].Journal of the Royal Society Interface, 2014, 11:20140321. doi: 10.1098/rsif.2014.0321
    [3] GE W, SHELDON Q S, JINWU W, et al.Tensile properties of four types of individual cellulosic fibers[J].Wood and Fiber Science, 2011, 43(4):353-364. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ba6b4a5bf2d10adfc0a09a779f499de
    [4] ABDUL K H, BHAT I U H, JAWAID M, et al.Bamboo fibre reinforced biocomposites:a review[J].Materials & Design, 2012, 42:353-368. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227738632/
    [5] DEPUYDT D E, SWEYGERS N, APPELS L, et al.Bamboo fibres sourced from three global locations: a microstructural, mechanical and chemical composition study[J/OL].Journal of Reinforced Plastics and Composites.[2019-02-11].https://doi.org/10.1177/0731684419828532.
    [6] 苏航, 郑水蓉, 孙曼灵, 等.纤维增强环氧树脂基复合材料的研究进展[J].热固性树脂, 2011, 26(4):54-57. http://d.old.wanfangdata.com.cn/Periodical/tjkj201807019
    [7] 李雪.竹原纤维增强复合材料拉伸破坏行为的表征和模拟[D].重庆: 西南大学, 2016.
    [8] ZHANG K, WANG F X, LIANG W Y, et al.Thermal and mechanical properties of bamboo fiber reinforced epoxy composites[J].Polymers, 2018, 10(6):608.DOI: 10.3390/polym10060608.
    [9] 王戈, 顾少华, 程海涛, 等.竹质滑板面板的开发与研究现状[J].林产工业, 2019, 46(2):19-23. http://d.old.wanfangdata.com.cn/Periodical/lcgy201902005
    [10] RAJULU A V, CHARY K N, REDDY G R, et al.Void content, density and weight reduction studies on short bamboo fiber-epoxy composites[J].Journal of Reinforced Plastics and Composites, 2004, 23(2):127-130. doi: 10.1177/0731684404029326
    [11] 张阿樱, 张东兴, 李地红, 等.碳纤维/环氧树脂层压板的孔隙问题[J].宇航材料工艺, 2011(3):16-19. doi: 10.3969/j.issn.1007-2330.2011.03.005
    [12] GUPTA A.Synthesis, chemical resistance, and water absorption of bamboo fiber reinforced epoxy composites[J].Polymer Composites, 2014, 37(1):141-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d428faebb728d21f9cd8eb641fa2565
    [13] BOWLES K J, FRIMPONG S.Void effects on the interlaminar shear strength of unidirectional graphite-fiber-reinforced composites[J].Journal of Composite Materials, 1992, 26(10):1487-1509. doi: 10.1177/002199839202601006
    [14] COSTA M L, DE ALMEIDA S F M, REZENDE M C.The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates[J].Composites Science and Technology, 2001, 61(14):2101-2108. doi: 10.1016/S0266-3538(01)00157-9
    [15] DIXON P G, MUTH J T, XIAO X, et al.3D printed structures for modeling the Young's modulus of bamboo parenchyma[J].Acta Biomaterialia, 2018, 68:90-98. doi: 10.1016/j.actbio.2017.12.036
    [16] 何盛, 徐军, 吴再兴, 等.毛竹与樟子松木材孔隙结构的比较[J].南京林业大学学报(自然科学版), 2017, 41(2):157-162. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201702023
    [17] OSORIO L, TRUJILLO E, LENS F, et al.In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties[J].Journal of Reinforced Plastics and Composites, 2018, 37(17):1099-1113. doi: 10.1177/0731684418783055
    [18] 张冬梅, 叶金蕊, 刘奎, 等.孔隙微观特征影响CFRP力学性能的细观综述[J].复合材料学报, 2013, 30(Suppl1):118-123. http://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1024.htm
    [19] MEHDIKHANI M, GORBATIKH L, VERPOEST I, et al.Voids in fiber-reinforced polymer composites: a review on their formation, characteristics, and effects on mechanical performance[J].Journal of Composite Materials.[2018-11-20].https: //doi.org/10.1177/0021998318772152.
    [20] 范云星, 李易红, 邱欢, 等.碳纤维预浸料成型自行车结构件气泡原因及解决方案[J].高科技纤维与应用, 2017, 42(5):24-27. doi: 10.3969/j.issn.1007-9815.2017.05.005
    [21] 王雪明, 谢福原, 李敏, 等.热压罐成型复合材料复杂结构对制造缺陷的影响规律[J].航空学报, 2009, 30(4):757-762. doi: 10.3321/j.issn:1000-6893.2009.04.029
    [22] HAMIDI Y K, DHARMAVARAM S, AKTAS L, et al.Effect of fiber content on void morphology in resin transfer molded E-Glass/Epoxy composites[J].Journal of Engineering Materials and Technology, 2009, 131(2). DOI: 10.1115/IMECE2005-80387.
    [23] 王跃飞.碳纤维增强复合材料HP-RTM成型工艺及孔隙控制研究[D].长沙: 湖南大学, 2017.
    [24] 苏玉堂.孔隙含量对复合材料力学性能的影响[J].复合材料学报, 1988, 5(3):55-61. http://d.old.wanfangdata.com.cn/Conference/318148
    [25] 陈平, 陈辉.孔隙率对纤维复合材料电学性能和力学性能的影响[J].纤维复合材料, 1991(2):15-19. http://www.cnki.com.cn/Article/CJFDTOTAL-QWFC199102006.htm
    [26] PACIORNIK S, D'ALMEIDA J R M.Measurement of void content and distribution in composite materials through digital microscopy[J].Journal of Composite Materials, 2008, 43(2):101-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12037c1ee03fceefafee23c7f886bcda
    [27] STAMOPOULOS A, TSERPES K, PRUCHA P, et al.Evaluation of porosity effects on the mechanical properties of carbon fiber-reinforced plastic unidirectional laminates by X-ray computed tomography and mechanical testing[J].Journal of Composite Materials, 2015, 50(15):2087-2098. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/0021998315602049
    [28] 朱洪艳.孔隙对碳/环氧复合材料层压板性能的影响与评价研究[D].哈尔滨: 哈尔滨工业大学, 2010.
    [29] 张阿樱, 张东兴, 朱洪艳, 等.碳纤维/环氧树脂层压板孔隙率及力学性能的试验表征[J].玻璃钢/复合材料, 2011(1):24-28. doi: 10.3969/j.issn.1003-0999.2011.01.006
    [30] 陈超, 张娅婷, 顾轶卓, 等.碳纤维/环氧复合材料孔隙缺陷的工艺影响因素研究[J].玻璃钢/复合材料, 2014(5):51-55. doi: 10.3969/j.issn.1003-0999.2014.05.010
    [31] SCHIWARTH M, WEISSENBOCK J, PLANK B, et al.Visual analysis of void and reinforcement characteristics in X-ray computed tomography dataset series of fiber-reinforced polymers[J].IOP Conference Series:Materials Science and Engineering, 2018, 406(1):012014.DOI: 10.1088/1757-899X/406/1/012014.
    [32] 孙韬.湿热环境下孔隙对CFRP力学性能的影响研究[D].哈尔滨: 哈尔滨工业大学, 2010.
    [33] 汤栋, 赵玉萍, 张娟, 等.竹纤维热固性树脂基复合材料力学性能的研究[J].材料导报, 2011, 25(增刊1):408-410. http://cdmd.cnki.com.cn/Article/CDMD-10389-1017023569.htm
    [34] KHAN Z, YOUSIF B F, ISLAM M.Fracture behaviour of bamboo fiber reinforced epoxy composites[J].Composites Part B:Engineering, 2017, 116:186-199. doi: 10.1016/j.compositesb.2017.02.015
    [35] BISWAS S, DEBNATH K, PATNAIK A.Mechanical behaviour of short bamboo fiber reinforced epoxy composites filled with alumina particulate[C].Kathmandu Symposia on Advanced Materials 2012, Kathmandu, Nepal, 2012: 1-8.
    [36] SATHISH S, KUMARESAN K, PRABHU L, et al.Experimental investigation on volume fraction of mechanical and physical properties of flax and bamboo fibers reinforced hybrid epoxy composites[J].Polymers & Polymer Composites, 2017, 25(3):229-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b1d11bb98bef339c3de8e4836454a3a
    [37] DEPUYDT D E C, SOETE J, ASFAW Y D, et al.Sorption behaviour of bamboo fibre reinforced composites, why do they retain their properties?[J].Composites Part A:Applied Science and Manufacturing, 2019, 119:48-60. doi: 10.1016/j.compositesa.2019.01.020
    [38] 王蕾, 张福勤, 夏莉红, 等.压汞法分析C/C复合材料平板的孔隙结构[J].矿冶工程, 2009, 29(4):95-98. doi: 10.3969/j.issn.0253-6099.2009.04.025
    [39] 苌姗姗, 胡进波, BRUNO C, 等.氮气吸附法表征杨木应拉木的孔隙结构[J].林业科学, 2011, 47(10):134-140. doi: 10.11707/j.1001-7488.20111021
    [40] 王哲, 王喜明.木材多尺度孔隙结构及表征方法研究进展[J].林业科学, 2014, 50(10):123-133. http://d.old.wanfangdata.com.cn/Periodical/lykx201410017
    [41] XUEXIA Z, JING L, YAN Y, et al.Investigating the water vapor sorption behavior of bamboo with two sorption models[J]. Journal of Materials Science, 2018, 53(11):8241-8249. doi: 10.1007/s10853-018-2166-y
    [42] OSORIO L, TRUJILLO E, VUURE A W V, et al.Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites[J].Journal of Reinforced Plastics and Composites, 2011, 30(5):396-408. doi: 10.1177/0731684410397683
    [43] 费本华, 刘嵘, 刘贤淼, 等.竹材纹孔结构及表征方法研究进展[J].林业工程学报, 2019, 4(2):1-7. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201902002
    [44] 彭冠云.基于CT技术检测木材、竹材结构特征的研究[D].北京: 中国林业科学研究院, 2009.
    [45] NGUYEN T T B, MORIOKA M, YOKOYAMA A, et al.Measurement of fiber orientation distribution in injection-molded short-glass-fiber composites using X-ray computed tomography[J].Journal of Materials Processing Technology, 2015, 219:1-9. doi: 10.1016/j.jmatprotec.2014.11.048
    [46] 王羽, 汪丽华, 王建强, 等.基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构[J].岩矿测试, 2018, 37(3):235-243. http://d.old.wanfangdata.com.cn/Periodical/ykcs201803002
    [47] 王次臣.基于深度学习的大规模图数据挖掘[D].南京: 南京邮电大学, 2017.
    [48] 胡伟俭, 陈为, 冯浩哲, 等.应用于平扫CT图像肺结节检测的深度学习方法综述[J].浙江大学学报(理学版), 2017, 44(4):379-384. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb201704002
    [49] 嵇伟伟.基于深度学习的医学CT图像中器官的区域检测[D].南京: 南京师范大学, 2018.
    [50] 文琼华, 孟江燕, 龚楚, 等.碳纤维增强树脂基复合材料孔隙率检测方法的分析比较[J].玻璃钢/复合材料, 2016(7):32-37. doi: 10.3969/j.issn.1003-0999.2016.07.006
    [51] 陆铭慧, 张雪松, 郑善朴, 等.基于超声的碳纤维复合材料孔隙率表征方法对比研究[J].玻璃钢/复合材料, 2018(7):42-48. doi: 10.3969/j.issn.1003-0999.2018.07.007
    [52] 曾俊.基于超声发射技术的东北东部主要树种空穴化研究[D].哈尔滨: 东北林业大学, 2017.
    [53] 张训亚, 姜笑梅, 殷亚方.木材声-超声检测技术国内外研究现状[J].木材加工机械, 2018, 29(2):34-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mcjgjx201802009
  • 加载中
图(1)
计量
  • 文章访问数:  1010
  • HTML全文浏览量:  0
  • PDF下载量:  1024
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-23
  • 修回日期:  2019-04-03
  • 网络出版日期:  2019-04-16
  • 刊出日期:  2019-05-28

目录

    /

    返回文章
    返回