• 中国中文核心期刊
  • 中国农林核心期刊
  • 中国期刊方阵双效期刊
  • RCCSE中国核心学术期刊
  • 中国科学引文数据库(核心库)来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

害虫对森林碳汇的影响及其机理

景天忠 豆晓洁

景天忠, 豆晓洁. 害虫对森林碳汇的影响及其机理[J]. 世界林业研究, 2016, 29(1): 29-35. doi: 10.13348/j.cnki.sjlyyj.2016.0002.y
引用本文: 景天忠, 豆晓洁. 害虫对森林碳汇的影响及其机理[J]. 世界林业研究, 2016, 29(1): 29-35. doi: 10.13348/j.cnki.sjlyyj.2016.0002.y
Tianzhong Jing, Xiaojie Dou. Impact and Mechanism of Insect Pests on Forest Carbon Sequestration[J]. WORLD FORESTRY RESEARCH, 2016, 29(1): 29-35. doi: 10.13348/j.cnki.sjlyyj.2016.0002.y
Citation: Tianzhong Jing, Xiaojie Dou. Impact and Mechanism of Insect Pests on Forest Carbon Sequestration[J]. WORLD FORESTRY RESEARCH, 2016, 29(1): 29-35. doi: 10.13348/j.cnki.sjlyyj.2016.0002.y

害虫对森林碳汇的影响及其机理

doi: 10.13348/j.cnki.sjlyyj.2016.0002.y
基金项目: 

国家科技计划"东北森林碳增汇效应调控技术研究" 2011BAD37B01

详细信息
    作者简介:

    景天忠, 博士, 副教授, 主要研究方向为森林昆虫学和害虫综合管理, E-mail:Jingtianzhong@163.com

  • 中图分类号: S718.55;S763.3

Impact and Mechanism of Insect Pests on Forest Carbon Sequestration

  • 摘要: 森林是陆地生态系统中最主要的固碳者。但森林常受到各种干扰, 使其固碳能力下降, 甚至变成碳源。文中主要介绍了叶部害虫、干部害虫和根部害虫干扰对森林碳汇的影响及其机理方面的研究进展。森林昆虫种类繁多, 危害方式及机理也各不相同。叶部害虫通过食叶或吸取汁液破坏叶绿素直接影响光合作用。研究表明, 与光合作用相关基因的表达下调或上调, 光合作用减弱或增强, 目前尚无一致的结论。在林分水平上, 失叶通常导致碳贮量下降。小蠹虫等蛀干害虫危害致树木死亡, 将森林由碳库变成碳源。根部害虫不但使根生物量下降, 还会影响植物光合作用, 但机理尚不清楚。害虫暴发后改变了土壤理化性质, 但在一定时间范围内对土壤呼吸并无显著影响, 其机理尚待揭示。
  • [1] 刘文国, 张旭东, 黄玲玲, 等.我国杨树生理生态研究进展[J].世界林业研究, 2010, 23(1): 50-55. http://www.sjlyyj.com/ch/reader/view_abstract.aspx?flag=1&file_no=20100109&journal_id=sjlyyj
    [2] 王仲峰, 冯仲科.森林蓄积量与生物量转换的CVD模型研究[J].北华大学学报(自然科学版), 2006, 7(3): 265-268. http://d.old.wanfangdata.com.cn/Periodical/bhdxxb200603020
    [3] 赵敏, 周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学, 2004, 24(1): 50-54. http://d.old.wanfangdata.com.cn/Periodical/dlkx200401009
    [4] CYR H, PACE M L. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems[J]. Nature, 1993, 361(6408): 148-150. doi: 10.1038/361148a0
    [5] 续珊珊, 贾利, 李友华.森林碳汇影响因素的灰色关联分析:基于辽宁等20个省、区面板数据的实证分析[J].林业经济, 2010(3): 30-35. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lszg201003010&dbname=CJFD&dbcode=CJFQ
    [6] DYMOND C C, NEILSON E T, STINSON G, et al. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests[J]. Ecosystems, 2010, 13(6): 917-931. doi: 10.1007/s10021-010-9364-z
    [7] MEDVIGY D, CLARK K L, SKOWRONSKI N S, et al. Simulated impacts of insect defoliation on forest carbon dynamics[J]. Environmental Research Letters, 2012, 7(4): 45703-45711. doi: 10.1088/1748-9326/7/4/045703
    [8] SCHÄFER K V R, CLARK K L, SKOWRONSKI N, et al. Impact of insect defoliation on forest carbon balance as assessed with a canopy assimilation model[J]. Global Change Biology, 2010, 16(2): 546-560. doi: 10.1111/gcb.2010.16.issue-2
    [9] HEWETT E W. Some effects of infestation on plants: a physiological viewpoint[J]. The New Zealand Entomologist, 1977, 6(3): 235-243. doi: 10.1080/00779962.1977.9722257
    [10] GIBSON R W, WHITEHEAD D, AUSTIN D J, et al. Prevention of potato leaf-roll by aphicide and its effect on leaf area and photosynthesis[J]. Anncils of Applied Biology, 1976, 82(1): 151-153. doi: 10.1111/aab.1976.82.issue-1
    [11] VELIKOVA V, SALERNO G, FRATI F, et al. Influence of feeding and oviposition by phytophagous pentatomids on photosynthesis of herbaceous plants[J]. Journal of Chemical Ecology, 2010, 36(6): 629-641. doi: 10.1007/s10886-010-9801-7
    [12] MACEDO T B, PETERSON R K D, WEAVER D K, et al. Wheat stem sawfly, Cephnus cinctus Norton, impact on wheat primary metabolism: an ecophysiological approach[J]. Environmental Entomology, 2005, 34(3): 719-726. doi: 10.1603/0046-225X-34.3.719
    [13] GUTSCHE A R, HENG-MOSS T M, HIGLEY L G, et al. Physiological responses of resistant and susceptible barley, Horedum vulgare to the Russian wheat aphid, Diurpahis noxia (Mordvilko)[J]. Arthropod-Plant Interactions, 2009, 3(4): 233-240. doi: 10.1007/s11829-009-9067-6
    [14] KERCHEV P I, FENTON B, FOYER C H, et al. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways[J]. Plant Cell and Environment, 2012, 35(2): 441-53. doi: 10.1111/j.1365-3040.2011.02399.x
    [15] GIRI A P, WVNSCHE H, MITRA S, et al. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuate: Ⅶ. changes in the plant's proteome[J]. Plant Physiology, 2006, 142(4): 1621-1641. doi: 10.1104/pp.106.088781
    [16] BILGIN D D, ZAVALA J A, ZHU J, et al. Biotic stress globally downregulates photosynthesis genes[J]. Plant Cell and Environment, 2010, 33(10): 1597-1613. doi: 10.1111/pce.2010.33.issue-10
    [17] 周国鑫. 二化螟取食胁迫下的水稻转录组分析及相关基因OsHI-LOX的功能解析[D]. 杭州: 浙江大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10335-2009156604.htm
    [18] 韦朝领, 童鑫, 高香凤, 等.茶树对茶尺蠖取食危害的补偿光合生理反应研究[J].安徽农业大学学报, 2007, 34(3): 355-359. http://d.old.wanfangdata.com.cn/Periodical/ahnydxxb200703010
    [19] 梁军生, 张玉荣, 周小玲.杨小舟蛾取食杨树叶片光合生理特性的影响[J].南京林业大学报(自然科学版), 2012, 36(1): 84-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlydxxb201201017
    [20] RETUERTO R, FERNANDEZ-LEMA B, OBESO J R. Changes in photochemical efficiency in response to herbivory and experimental defoliation in the dioecious tree Ilex aquifolium[J]. International Journal of Plant Sciences, 2006, 167(2): 279-289. doi: 10.1086/498919
    [21] BELESKY D P, HILL N S. Defoliation and leaf age influence on ergot alkaloids in tall fescue[J]. Annals of Botany, 1997, 79(3): 259-264. doi: 10.1006/anbo.1996.0342
    [22] WAREING P F, KHALIFA M M, TREHARNE K J. Rate-limiting processes in photosynthesis at saturating light intensities[J]. Nature, 1968, 220 (5166): 453-457. doi: 10.1038/220453a0
    [23] KHAN N A, LONE P M. Effects of early and late season defoliation on photosynthesis, growth and yield of mustard (Brassica juncea L.) [J]. Brazil Journal of Plant Physiology, 2005, 17(1): 181-186. doi: 10.1590/S1677-04202005000100015
    [24] HARE J D. Impact of defoliation by the Colorado potato beetle on potato yields[J]. Journal of Economic Entomology, 1980, 73(3): 36-73. http://cn.bing.com/academic/profile?id=f83e8973dea7057031bb7a20260c40df&encoded=0&v=paper_preview&mkt=zh-cn
    [25] KHAN N A, AHSAN N. Evaluation of yield potential of defoliated mustard cultivars[J]. Tests of Agrochemicals and Cultivars, 2000(21): 33-34. http://cn.bing.com/academic/profile?id=66f8632fdfb3b46141e3acc304ae05e6&encoded=0&v=paper_preview&mkt=zh-cn
    [26] 王联德, 尤民生, 吴清.柑桔潜叶蛾对柑桔的为害及经济阈值的研究[J].应用生态学报, 1999, 10(4):457-460. http://d.old.wanfangdata.com.cn/Periodical/yystxb199904019
    [27] KHAN N A, KHAN M, SAMIULLA H A H R. Auxin and defoliation effects on photosynthesis and ethylene evolution in mustard[J]. New Zealand Journal of Crop and Horticultural Science, 2002, 96(1/2/3/4): 43-51. http://cn.bing.com/academic/profile?id=861ba7011a384fc706eaafa529e93083&encoded=0&v=paper_preview&mkt=zh-cn
    [28] COLLIN P, EPRON D, ALAOUI-SOSSE B, et al. Growth responses of common ash seedlings (Fraxinus excelsior L.) to total and partial defoliation[J]. Annals of Botany, 2000, 85(3): 317-323. doi: 10.1006/anbo.1999.1045
    [29] BELSKY A J. Does herbivory benefit plants? a review of the evidence[J]. American Naturalist, 1986, 127(6): 870-892. doi: 10.1086/284531
    [30] BELSKY A J, CARSON W P, JENSEN C L, et al. Overcompensation by plants:herbivore optimization or red herring?[J]. Evolutionary Ecology, 1993, 7(1): 109-121. doi: 10.1007/BF01237737
    [31] DANIEL R S, MADHURA H S, KEN N P. The genetic basis of overcompensation in plants: a synthesis[J]. International Journal of Modern Botany, 2013, 2(3): 34-42. http://www.researchgate.net/publication/258819660_The_Genetic_Basis_of_Overcompensation_in_Plants_A_Synthesis
    [32] SIDDAPPAJI M H, SCHOLES D R, BOHN M, et al. Overcompensation in response to herbivory in Arabidopsis thaliana: the role of glucose-6-phosphate dehydrogenase and the oxidative pentose-phosphate pathway[J]. Genetics, 2013, 195(2): 589-598. doi: 10.1534/genetics.113.154351
    [33] KHAN N A, SINGH S, NAZAR R, et al. The source-sink relationship in mustard[J]. Asian and Australasian Journal of Plant Science and Biotechnology, 2007, 1(1): 10-18. https://www.researchgate.net/profile/Sarvajeet_Gill/publication/301731489_The_Asian_and_Australasian_Journal_of_Plant_Science_and_Biotechnology_The_Source-Sink_Relationship_in_Mustard/links/57246d7308aee491cb379949.pdf?origin=publication_detail
    [34] LIU H D, YU F H, HE W M, et al. Are clonal plants more tolerant to grazing than co-occurring non-clonal plants in inland dunes?[J].Evolutionary Ecology Research, 2007, 22(3): 502-506. doi: 10.1007/s11284-007-0332-9
    [35] LEE J M, SATHISH P, DONAGHY D J, et al. Impact of defoliation severity on photosynthesis, carbon metabolism and transport gene expression in perennial ryegrass[J]. Functional Plant Biology, 2011, 38(10): 808-817. doi: 10.1071/FP11048
    [36] KURZ W A, DYMOND C C, STINSON G, et al. Mountain pine beetle and forest carbon feedback to climate change[J]. Nature, 2008, 452(7190): 987-990. doi: 10.1038/nature06777
    [37] PFEIFER E M, HICKE J A, MEDDENS A J H. Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States[J]. Global Change Biology, 2010, 17(1): 339-350. http://cn.bing.com/academic/profile?id=0b074e159cafdb512a3bfa67730dfa7f&encoded=0&v=paper_preview&mkt=zh-cn
    [38] BRIGHT B C, HICKE J A, HUDAK A T. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho[J]. Environmental Research Letters, 2012, 7(4): 045702. DOI: 10.1088/1748-9326/7/4/045702.
    [39] 梁军生, 陈晓鸣, 王健敏, 等.受小蠹虫不同阶段为害的云南松光合生理反应分析[J].林业科学研究, 2009, 22(3): 407-412. http://d.old.wanfangdata.com.cn/Periodical/lykxyj200903017
    [40] DUNGAN R J, TURNBULL M H, KELLY D. The carbon costs for host trees of a phloem-feeding herbivore[J]. Journal of Ecology, 2007, 95(4): 603-613. doi: 10.1111/jec.2007.95.issue-4
    [41] JOHNSON S N, RIEGLER M. Root damage by insects reverses the effects of elevated atmospheric CO2 on eucalypt seedlings[J]. PLOS ONE, 2013, 8(11): e79479. DOI: 10.1371/journal.pone.0079479.
    [42] HOU X, MEINKE L J, ARKEBAUER T J. Soil moisture and larval western corn rootworm injury: influence on gas exchange parameters in corn[J]. Journal of Food Agriculture and Environment, 1997, 89(5): 709-717. http://cn.bing.com/academic/profile?id=6ea6eba0240f2e827fdc555d845f41ba&encoded=0&v=paper_preview&mkt=zh-cn
    [43] RIEDELL W E, REESE R N. Maize morphology and shoot CO2 assimilation after root damage by western corn rootworm larvae[J]. Crop Science, 1999, 39(5): 1332-1340. doi: 10.2135/cropsci1999.3951332x
    [44] DUNN J P, FROMMELT K. Effects of below-ground herbivory by Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and soil moisture on leaf gas exchange of maize[J]. Journal of Applied Entomology, 1998, 122(4): 179-183.
    [45] HOPKINS R J, GRIFFITHS D W, MCKINLAY R G, et al. The relationship between cabbage root fly (Delia radicum) larval feeding and the freeze-dried matter and sugar content of Brassica roots[J]. Entomologia Experimentalis et Applicata, 1999, 92(1): 109-117. doi: 10.1046/j.1570-7458.1999.00530.x
    [46] FOGEL R. Roots as primary producers in below-ground ecosystems[M]//Fitter A H, Atkinson D, Read D J, et al. Ecological interactions in soil. Oxford: Blackwell, 1985: 23-26.
    [47] ELBERLING B. Annual soil CO2 effluxes in the high arctic: the role of snow thickness and vegetation type[J]. Soil Biology and Biochemistry, 2006, 39(2): 646-654. http://www.sciencedirect.com/science/article/pii/S0038071706004354
    [48] SIMS P L, BRADFORD J A. Carbon dioxide fluxes in a southern plains prairie[J]. Agricultural and Forest Meteorology, 2001, 109(2): 117-134. doi: 10.1016/S0168-1923(01)00264-7
    [49] FRANK A B. Carbon dioxide fluxes over a grazed prairie and seeded pasture in the northern Great Plains[J]. Environment Pollution, 2002, 116(3): 397-403. doi: 10.1016/S0269-7491(01)00216-0
    [50] NUCKOLLS A E, WURZBURGER N, FORD C R, et al. Hemlock declines rapidly with hemlock woolly adelgid infestation:impacts on the carbon cycle of southern Appalachian forests[J]. Ecosystems, 2009, 12(2): 179-190. doi: 10.1007/s10021-008-9215-3
    [51] MELLEC A, GEROLD G. Michalzik beate : insect herbivory, organic matter deposition and effects on belowground organic matter fluxes in a central European oak forest[J]. Plant and Soil, 2011, 342(1/2): 393-403.
    [52] LE MELLEC A, MICHALZIK B. Impact of a pine lappet (Dendrolimus pini) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany[J]. Canadian Journal of Forest Research, 2008, 38(7): 1829-1841. doi: 10.1139/X08-045
    [53] MOORE D J P, TRAHAN N A, WILKES P, et al. Persistent reduced ecosystem respiration after insect disturbance in high elevation forests[J]. Ecology Letters, 2013, 16(6): 731-737. doi: 10.1111/ele.12097
    [54] MOREHOUSE K, JOHNS T, KAYE J, et al. Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests[J]. Forest Ecology and Management, 2008, 255(7): 2698-2708. doi: 10.1016/j.foreco.2008.01.050
    [55] NIEMIEC R M, LUTZ D A, HOWARTH R B. Incorporating carbon storage into the optimal management of forest insect pests: a case study of the southern pine beetle (Dendroctonus frontalis Zimmerman) in the New Jersey pinelands[J]. Environmental Management, 2014, 54(4): 875-887. doi: 10.1007/s00267-014-0304-0
  • 加载中
计量
  • 文章访问数:  2536
  • HTML全文浏览量:  11
  • PDF下载量:  1448
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-26
  • 修回日期:  2015-08-30
  • 刊出日期:  2016-02-01

目录

    /

    返回文章
    返回