A Review of Wood Identification by DNA Barcoding
-
摘要: 木材种属鉴定具备显著的生物学与经济意义, 但传统的以显微特征观察为主的方法已不能适应高通量和精细化鉴别的需要。DNA条形码是根据特定基因片段的序列差异, 利用生物信息学技术对生物物种进行快速分类与鉴别的方法。近年来, DNA条形码技术已被陆续应用于木本植物及相应木材的种质鉴定, 在目标基因选择、木材DNA提取及生物信息学分析等方面均取得显著进展。在使用优化的微量DNA提取技术的前提下, 干燥木材中也可提取出满足扩增要求的DNA。经过生命条形码联盟等国际机构的长期努力, 确定了rbcL+ matK组合等通用植物条形码标记及ITS2等补充标记, 并建立了BOLD等数据库系统。传统的条形码序列分析主要通过BLAST比对、遗传距离分析及系统进化分析来实现, 近年来随着生物信息学的发展, DNA条码数据库不断完善, 新的数据分析方法和软件正不断涌现。文中在总结现有研究成果和实施规范的基础上, 综述国内外应用DNA条形码技术进行木材鉴别的新进展, 并着重阐述新型序列分析方法和相应的生物信息学工具。Abstract: Wood species identification has great biological and economic significance, and however, the traditional method predominately based on observation of microscopic characteristics was not able to meet the need of the high-flux and refined identification. DNA barcoding is a technology for biological species classification and identification, based on the specific differences of gene sequence, combining with the bioinformatics technology. Recently, DNA barcoding has been applied in the identification of woody plants and the corresponding timber species, achieving significant progress in target gene selection, wood DNA extraction and bioinformatics analysis. In the use of optimized micro-scale DNA extraction technology, DNA meeting the requirement of amplification can be extracted from drying wood. With the long-term efforts of international institutes such as CBOL, rbcL + matK gene combination were determined as main plant barcode markers while some other genes such as ITS2 were regarded as supplemental markers. Moreover, the BOLD database system was established. The traditional barcode sequence analysis mainly depends on BLAST comparison, genetic distance analysis and phylogeny analysis. In recent years, with the development of bioinformatics technology, DNA barcode database has been constantly improved, and new analysis methods and special software have been continuously emerging. Based on the summary of present research results and implementation standards, this paper reviewed the progress in the application of DNA barcode technology in wood identification both in China and abroad, with the focus on the new sequence analysis methods and the corresponding bioinformatics tools.
-
Key words:
- DNA barcode /
- gene marker /
- wood DNA /
- analysis software
-
表 1 可用于木材DNA条形码数据处理的软件
-
[1] 伏建国, 刘金良, 杨晓军, 等.分子生物学技术应用于木材识别的研究进展[J].浙江农林大学学报, 2013, 30(3) : 438-443. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201303022 [2] Fladung M, Buschbom J. Identification of single nucleotides polymorphisms in different Populus species[J].Trees, 2009, 23(6): 1199-1212. doi: 10.1007/s00468-009-0359-3 [3] Rachmayanti Y, Leinemann L, Gailing O, et al. Extraction, amplification and characterization of wood DNA from Dipterocarpaceae [J]. Plant Molecular Biology Reporter, 2006, 24(1): 45-55. doi: 10.1007/BF02914045 [4] Hebert P D N, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes [J]. Proceedings of Royal Society of London:Series B, 2003, 270(1512): 313-321. doi: 10.1098/rspb.2002.2218 [5] Chen S L, Yao H, Han J P, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species[J]. PLoS ONE, 2010, 5(1). doi: 10.1371/journal.pone.0008613. [6] 高连明, 刘杰, 蔡杰, 等.关于植物DNA条形码研究技术规范[J].植物分类与资源学报, 2012, 34(6): 592-606. http://d.old.wanfangdata.com.cn/Periodical/ynzwyj201206009 [7] Kane N C, Cronk Q. Botany without borders: barcoding in focus [J]. Molecular Ecology, 2008, 17(24): 5175-5176. doi: 10.1111/mec.2008.17.issue-24 [8] Rachmayanti Y, Leinemann L, Gailing O, et al. DNA from processed and un-processed wood: factors influencing the isolation success [J]. Forensic Science International: Genetics, 2009, 3(3): 185-192. doi: 10.1016/j.fsigen.2009.01.002 [9] Finkeldey R, Leinemann L, Gailing O. Molecular genetic tools to infer the origin of forest plants and wood [J]. Applied Microbiology and Biotechnology, 2010, 85(5): 1251-1258. doi: 10.1007/s00253-009-2328-6 [10] White E, Hunter J, Dubetz C, et al. Microsatellite markers for individual tree genotyping: application in forest crime prosecutions [J]. Journal of Chemical Technology and Biotechnology, 2000, 75(10): 923-926. doi: 10.1002/(ISSN)1097-4660 [11] Reynolds M M, Williams C G. Extracting DNA from submerged pine wood [J]. Genome, 2004, 47(5): 994-997. doi: 10.1139/g04-045 [12] Abe H, Watanabe U, Yoshida K, et al. Changes in organelle and DNA quality, quantity, and distribution in the wood of Cryptomeria japonica over long-term storage [J]. International Association of Wood Anatomists Journal, 2011, 32(2): 263-272. http://www.researchgate.net/publication/265663112_CHANGES_IN_ORGANELLE_AND_DNA_QUALITY_QUANTITY_AND_DISTRIBUTION_IN_THE_WOOD_OF_CRYPTOMERIA_JAPONICA_OVER_LONG-TERM_STORAGE [13] 伏建国, 刘金良, 杨晓军, 等.进口黄檀属木材DNA提取与分子鉴定方法初步研究[J].浙江农林大学学报, 2013, 30(4) : 627-632. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201304025 [14] Jiao L, Yin Y, Xiao F, et al. Comparative analysis of two DNA extraction protocols from fresh and dried wood of Cunninghamia lanceolata (Taxodiaceae) [J].International Association of Wood Anatomists Journal, 2012, 33(4): 441-456. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0228275892 [15] Asif M J, Cannon C H. DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus) [J]. Plant Molecular Biology Reporter, 2005, 23(2): 185-192. doi: 10.1007/BF02772709 [16] Tang X S, Zhao G J, Ping L Y. Wood identification with PCR targeting noncoding chloroplast DNA [J]. Plant Molecular Biology, 2011, 77(6) : 609-617. doi: 10.1007/s11103-011-9837-2 [17] Hollingsworth M L, Clark A, Forrest L L, et al.Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants [J]. Molecular Ecology Resources, 2009, 9(2): 439-457. doi: 10.1111/j.1755-0998.2008.02439.x [18] China Plant BOL Group, Li D Z, Gao L M, et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants [J]. Proceedings of the National Academy of Science of the United States of America, 2011, 108(49): 19641-19646. doi: 10.1073/pnas.1104551108 [19] Hilu K W, Liang H. The matK gene: sequence variation and application in plant systematics [J]. American Journal of Botany, 1997, 84(6): 830-839. doi: 10.2307/2445819 [20] Hollingsworth P M, Graham S W, Little D P. Choosing and using a plant DNA barcode [J]. PLoS ONE, 2011, 6(5). doi: 10.1371/journal.pone.0019254. [21] Devey D S, Chase M W, Clarkson J J. A stuttering start to plant DNA barcoding: microsatellites present a previously overlooked problem in noncoding plastid regions [J]. Taxon, 2009, 58(1): 7-15. http://www.cabdirect.org/abstracts/20093087704.html [22] Ebihara A, Nitta J H, Ito M. Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan[J].PLoS ONE, 2010, 5(12). doi: 10.1371/journal.pone.0015136. [23] CBOL Plant Working Group. A DNA barcode for land plants [J]. Proceedings of the National Academy of Sciences, 2009, 106(31): 12794-12797. doi: 10.1073/pnas.0905845106 [24] Chase M W, Cowan R S, Hollingsworth P M, et al. A proposal for a standardised protocol to barcode all land plants [J]. Taxon, 2007, 56(2): 295-299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0213453523 [25] Kress W J, Erickson D L. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA apacer region [J]. PLoS ONE, 2007, 2(6). Doi: 10.1371/journal.pone.0000508. [26] Fazekas A J, Burgess K S, Kesanakurti P R, et al.Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well [J]. PLoS ONE, 2008, 3(7). doi: 10.1371/journal.pone.0002802. [27] Seberg O, Petersen G. How many loci does it take to DNA barcode a crocus [J].PLoS ONE, 2009, 4(2).doi: 10.1371/journal.pone.0004598. [28] Burgess K S, Fazekas A J, Kesanakurti P R, et al. Discriminating plant species in a local temperate flora using the rbcL+matK DNA barcode [J]. Methods in Ecology and Evolution, 2011, 2(4): 333-340. doi: 10.1111/j.2041-210X.2011.00092.x [29] Kress W J, Erickson D L, Swenson N G, et al. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot [J]. PLoS ONE, 2010, 5(11). doi: 10.1371/journal.pone.0015409. [30] Gonzalez M A, Baraloto C, Engel J, et al. Identification of Amazonian trees with DNA barcodes [J]. PLoS ONE, 2009, 4(10).doi: 10.1371/journal.pone.0007483. [31] Kress W J, Erickson D L, Jones F A, et al. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama [J]. Proceedings of the National Academy of Sciences, 2009, 106(44): 18621-18626. doi: 10.1073/pnas.0909820106 [32] Gao T, Yao H, Song J, et al. Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2 [J]. Journal of Ethnopharmacology, 2010, 130(1): 116-121. doi: 10.1016/j.jep.2010.04.026 [33] Pang X, Song J, Zhu Y, et al. Using DNA barcoding to identify species within Euphorbiaceae [J]. Planta Medica, 2010, 76(15): 1784-1786. doi: 10.1055/s-0030-1249806 [34] Roy S, Tyagi A, Shukla V, et al. Universal plant DNA barcode loci may not work in complex groups: a case study with Indian Berberis species [J]. PLoS ONE, 2010, 5(10).doi: 10.1371/journal.pone.0013674. [35] Ren B Q, Xiang X G, Chen Z D. Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers [J].Molecular Ecology Resources, 2010, 10(4): 594-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0219959039 [36] Piredda R, Simeone M C, Attimonelli M, et al. Prospects of barcoding the Italian wild dendroflora: oaks reveal severe limitations to tracking species identity [J]. Molecular Ecology Resources, 2010, 11(1): 72-83. doi: 10.1111/j.1755-0998.2010.02900.x/abstract [37] von Cräutlein M, Korpelainen H, Pietiläinen M, et al. DNA barcoding: a tool for improved taxon identification and detection of species diversity [J]. Biodiversity and Conservation, 2011, 20(2): 373-389. doi: 10.1007/s10531-010-9964-0 [38] Newmaster S G, Fazekas A J, Steeves R A D, et al. Testing candidate plant barcode regions in the Myristicaceae [J]. Molecular Ecology Resources, 2008, 8(3): 480-490. doi: 10.1111/j.1471-8286.2007.02002.x [39] Lahaye R, van der Bank M, Bogarin D, et al. DNA barcoding the floras of biodiversity hotspots [J]. Proceedings of the National Academy of Sciences, 2008, 105(8): 2923-2928. doi: 10.1073/pnas.0709936105 [40] 宁淑萍, 颜海飞, 郝刚, 等.植物条形码研究进展[J].生物多样性, 2008, 16(5) : 417-425. doi: 10.3321/j.issn:1005-0094.2008.05.001 [41] Tripathi A M, Tyagi A, Kumar A, et al. The internal transcribed spacer (ITS) region and trnhH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India [J]. PLoS ONE, 2013, 8(2). doi: 10.1371/journal.pone.0057934. [42] Simeone M C, Piredda R, Papini A, et al. Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): problems, prospects and phylogenetic implications [J]. Botanical Journal of the Linnean Society, 2013, 172(4):478-499. doi: 10.1111/boj.2013.172.issue-4 [43] Brown S D J, Collins R A, Boyer S, et al. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding [J]. Molecular Ecology Resource, 2012, 12(3): 562-565. doi: 10.1111/men.2012.12.issue-3 [44] Liu C, Liang D, Gao T, et al. PTIGS-IdIt, a system for species identification by DNA sequences of the psbA-trnH intergenic spacer region [J]. BioMed Central Bioinformatics, 2011, 12 (Suppl 13). doi: 10.1186/1471-2105-12-S13-S4. [45] Jones M, Ghoorah A, Blaxter M. JMOTU and taxonerator: turning DNA barcode sequences into annotated operational taxonomic units [J]. PLoS ONE, 2011, 6 (4). doi: 10.1371/journal.pone.0019259. [46] Tyagi A, Bag S K, Shukla V, et al. Oligonucleotide frequencies of barcoding loci can discriminate species across kingdoms [J]. PLoS ONE, 2010, 5 (8). doi: 10.1371/journal.pone.0012330. [47] Kumar S, Carlsen T, Mevik B, et al. CLOTU: an online pipeline for processing and clustering of 454 amplicon reads into OTUs followed by taxonomic annotation [J]. BioMed Central Bioinformatics, 2011, 12(1):182-189. doi: 10.1186/1471-2105-12-182. [48] Wolf M, Friedrich J, Dandekar T, et al. CBCAnalyzer: inferring phylogenies based on compensatory base changes in RNA secondary structures [J]. In Silico Biology, 2005, 5(3): 291-294. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ022536850/ [49] Ashfaq M, Asif M, Anjum Z I, et al. Evaluating the capacity of plant DNA barcodes to discriminate species of cotton (Gossypium: Malvaceae) [J]. Molecular Ecology Resource, 2013, 13(4): 573-582. doi: 10.1111/men.2013.13.issue-4 [50] Steinke D, Vences M, Salzburger W, et al. TaxI: a software tool for DNA barcoding using distance methods [J]. Philosophical Transactions of the Royal Society B : Biological Sciences, 2005, 360 (1462): 1975-1980. doi: 10.1098/rstb.2005.1729 [51] Little D P. DNA barcode sequence identification incorporating taxonomic hierarchy and within taxon variability [J]. PLoS ONE, 2011, 6 (8). doi: 10.1371/journal.pone.0020552. [52] Seibel P N, Muller T, Dandekar T, et al.4SALE:a tool for synchronous RNA sequence and secondary structure alignment and editing [J]. BioMed Central Bioinformatics, 2006, 7: 498. doi: 10.1186/1471-2105-7-498. [53] Sarkar I N, Planet P J, DeSalle R. CAOS software for use in character-based DNA barcoding [J]. Molecular Ecology Resource, 2008, 8(6): 1256-1259. doi: 10.1111/men.2008.8.issue-6 -

计量
- 文章访问数: 3679
- HTML全文浏览量: 11
- PDF下载量: 2081
- 被引次数: 0