• 中国中文核心期刊
  • 中国农林核心期刊
  • 中国期刊方阵双效期刊
  • RCCSE中国核心学术期刊
  • 中国科学引文数据库(核心库)来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿地固碳功能与潜力

宋洪涛 崔丽娟 栾军伟 李胜男 马琼芳

宋洪涛, 崔丽娟, 栾军伟, 李胜男, 马琼芳. 湿地固碳功能与潜力[J]. 世界林业研究, 2011, 24(6): 6-11.
引用本文: 宋洪涛, 崔丽娟, 栾军伟, 李胜男, 马琼芳. 湿地固碳功能与潜力[J]. 世界林业研究, 2011, 24(6): 6-11.
Hongtao Song, Lijuan Cui, Junwei Luan, Shengnan Li, Qiongfang Ma. Wetland Function and Potential in Carbon Sequestration[J]. WORLD FORESTRY RESEARCH, 2011, 24(6): 6-11.
Citation: Hongtao Song, Lijuan Cui, Junwei Luan, Shengnan Li, Qiongfang Ma. Wetland Function and Potential in Carbon Sequestration[J]. WORLD FORESTRY RESEARCH, 2011, 24(6): 6-11.

湿地固碳功能与潜力

基金项目: 

北京市科技计划重大项目北京市湿地生态系统保护与恢复关键技术研究和示范 D08040600580000

国家"十一五"科技支撑计划项目湿地生态系统保护与恢复技术试验示范 2006BAD03A19

详细信息
    作者简介:

    宋洪涛, 博士后, 主要研究方向为湿地恢复与碳氮循环, 电话:010-62824155, E-mail:subalpine1981@gmail.com

    通讯作者:

    崔丽娟, 研究员, 电话:010-62824151, E-mail:lkyclj@126.com

  • 中图分类号: P941.78, X171.4

Wetland Function and Potential in Carbon Sequestration

  • 摘要: 湿地碳存储过程是湿地源、汇功能转换中的重要环节, 也是湿地生态系统应对全球气候变化的关键所在。结合国内外湿地固碳功能和潜力的研究成果, 文中分别对湿地固碳的生态机理、影响因子及量化研究方法进行了综述, 在指出现有研究中存在问题和不足的基础上, 提出了湿地固碳研究在内容和方法上的前景和发展趋势, 对进一步研究全球气候背景下的湿地碳动态具有参考意义。
  • [1] Bullock A, Acreman M.The role of wetlands in the hydrological cycle[J].Hydrology and Earth System Sciences, 2003, 7(3):358-389. doi: 10.5194/hess-7-358-2003
    [2] Mitra S, Wassmann R, Vlek P L G.An appraisal of global wetland area and its organic carbon stock[J].Current Science, 2005, 88(1):25-35. http://cn.bing.com/academic/profile?id=5048fe2d89dc3680318af3b5f4cff01e&encoded=0&v=paper_preview&mkt=zh-cn
    [3] Mitsch W J, Nahlik A M, Wolski P, et al.Tropical wetlands:seasonal hydrologic pulsing, carbon sequestration, and methane emissions[J].Wetlands Ecology and Management, 2010, 18(5):576-586. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216546311/
    [4] Trettin C C, Jurgensen M F.Carbon cycling in wetland forest soils[M]//Kimble J M, Birdsie R, Lal R.The potential of U.S.forest soils to sequester carbon and mitigate the greenhouse effect.Boca Raton, Florida: CRC Press, 2003: 311-331.
    [5] Smith L C, Macdonald G M, Velichko A A, et al.Siberian peatlands a net carbon sink and global methane source since the Early Holocene[J].Science, 2004, 303(5656):353-356. doi: 10.1126/science.1090553
    [6] Roulet N T, Lafleur P M, Richard P J H, et al.Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland[J].Global Change Biology, 2007, 13(2):397-411. doi: 10.1111/gcb.2007.13.issue-2
    [7] Bridgham S D, Megonigal J P, Keller J K, et al.The carbon balance of North American wetlands[J].Wetlands, 2006, 26(4):889-916. doi: 10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2
    [8] Bernal B, Mitsch W J.A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio[J].Ecological Engineering, 2008, 34(4):311-323. doi: 10.1016/j.ecoleng.2008.09.005
    [9] Craft C B.Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S.tidal marshes[J].Limnology and oceanography, 2007, 52(3):1220-1230. doi: 10.4319/lo.2007.52.3.1220
    [10] 梅雪英, 张修峰.长江口湿地海三棱蔗草(Scirpus mariqueter)的储碳、固碳功能研究:以崇明东滩为例[J].农业环境科学学报, 2007, 26(1):360-363. doi: 10.3321/j.issn:1672-2043.2007.01.073
    [11] Tolonen K, Vasander H, Damman A W H, et al.Rate of apparent and true carbon accumulation in boreal peatlands[C]//Proceedings of the 9th International Peat Congress, Uppsala, 1992: 319-333.
    [12] Gorham E.Northern peatlands:role in the carbon cycle and probable responses to climate warming[J].Ecological Application, 1991, 1(2):182-195. doi: 10.2307/1941811
    [13] Franzen L G, Chen D, Klinger L.Principles for a climate regulation mechanism during the Late Phanerooic era, based on carbon fixation in peat-forming wetlands[J].Ambio, 1996, 25(77):435-442.
    [14] Alongi D M, Wattayakorn G, Pfitzner J, et al.Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand[J].Marine Geology, 2001, 179(11):85-103. http://cn.bing.com/academic/profile?id=586c9a1ddf569da871b56a5f55b2036b&encoded=0&v=paper_preview&mkt=zh-cn
    [15] Dean W E, Gorham E.Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands[J].Geology, 1998, 26(6):535-538. doi: 10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO;2
    [16] Collins M E, Kuehl R J.Organic matter accumulation in organic soil[M]//Richardson J L, Vepraskas M J.Wetland soils: genesis, hydrology, landscapes, and classification.Boca Raton, Florida: CRC Press, 2000: 137-162.
    [17] Hartel P G.The soil habits[M]//Sylvia D M, Fuhrmann J J, Hartel P G, et al.Principles and applications of soil microbiology.2nd ed.Upper Saddle River, New Jersey: Pearson Prentice Hall, 2005: 26-53.
    [18] Dick W A, Gregorich E G.Developing and maintaining soil organic matter levels[M]//Schjonning P, Elmholt S, Christensen B T.Managing soil quality: challenges in modern agriculture.Cambridge, Massachusetts: CAB International, 2004: 103-120.
    [19] Cristian G, David B, Kristin S, et al.Temperature-controlled organic carbon mineralization in lake sediments[J].Nature, 2010, 466(7305):478-481. doi: 10.1038/nature09186
    [20] Turunen J, Nigel T, Moore R, et al.Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada[J].Global Biogeochemical Cycles, 2004, 18(3):537-629. http://cn.bing.com/academic/profile?id=f69d8f6c629e411b69a049dc402302b8&encoded=0&v=paper_preview&mkt=zh-cn
    [21] Chmura G L, Anisfeld S C, Cahoon D R, et al.Global carbon sequestration in tidal saline wetland soils[J].Global Biogeochemistry Cycles, 2003, 17(4):421-479. doi: 10.1029-2002GB001917/
    [22] Choi Y, Wang Y.Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements[J].Global Biogeochemical Cycles, 2004, 18(4):379-401. http://cn.bing.com/academic/profile?id=894b2b0c453bd23f70b9b893a26fe0b8&encoded=0&v=paper_preview&mkt=zh-cn
    [23] Gorham E.The biochemistry of northern peatlands and its possible responses to global warming[M].New York:Oxford University Press, 1998:169-187.
    [24] Turunen J, Tomppo E, Tolonen K, et al.Estimating carbon accumulation rates of undrained mires in Finland-application to boreal and subarctic regions[J].Holocene, 2002, 12(1):69-80. doi: 10.1191/0959683602hl522rp
    [25] Reddy K R, Delaune R D, Debusk W F, et al.Long-term nutrient accumulation rates in the Everglades[J].Soil Science Society of America Journal, 1993, 57(4):1147-1155. doi: 10.2136/sssaj1993.03615995005700040044x
    [26] Anderson C J, Mitsch W J.Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes[J].Wetlands, 2006, 26(3):779-792. doi: 10.1672/0277-5212(2006)26[779:SCANAA]2.0.CO;2
    [27] 段晓男, 王效科, 逯非, 等.中国湿地生态系统固碳现状和潜力[J].生态学报, 2008, 28(2):463-468. doi: 10.3321/j.issn:1000-0933.2008.02.002
    [28] Brix H, Sorrell B K, Lorenzen B.Are phragmites-dominated wetlands a net source or net sink of greenhouse gases[J].Aquatic Botany, 2001, 69(22):313-324. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_a1d3b282d3be7085c2077ee4a9ccf730
    [29] Mitsch W J, Zhang L, Anderson C J, et al.Creating riverine wetlands:ecological succession, nutrient retention, and pulsing effects[J].Ecological Engineering, 2005, 25(5):510-527. doi: 10.1016/j.ecoleng.2005.04.014
    [30] Jones M B, Muthuri F M.Standing biomass and carbon distribution in a papyrus (Cyperus papyrus L.) swamp on Lake Naivasha, Kenya[J].Tropical Ecology, 1997, 13(3):347-356. doi: 10.1017/S0266467400010555
    [31] 田应兵.若尔盖高原湿地不同生境下植被类型及其分布规律[J].长江大学学报:自然科学版, 2005, 2(2):1-5. http://d.old.wanfangdata.com.cn/Periodical/cjdxxb-rkxb200502001
    [32] Junk W J.Structure and function of the large central Amazonian river floodplains: synthesis and discussion[M]//Junk W J.The central Amazonian floodplain.Berlin: Springer-Verlag, 1997: 455-472.
    [33] Zhang L, Mitsch W J.Sediment chemistry and nutrient influx in a hydrologically restored bottomland hardwood forest in Midwestern USA[J].River Research and Applications, 2007, 23(9):1026-1037. doi: 10.1002/(ISSN)1535-1467
    [34] 刘德燕, 宋长春, 黄靖宇.沼泽湿地植物光合特性及固"碳"潜势对外源氮输入的响应[J].环境科学学报, 2008, 12(2):67-76. http://www.cnki.com.cn/Article/CJFDTotal-HJXX200802015.htm
    [35] Jauhiainen J, Silvola J.Photosynthesis of Sphagnum fuscum at long-term raised CO2 concentrations[J].Annales Botanici Fennici, 1999, 36(7):11-19. https://www.researchgate.net/publication/238663741_Photosynthesis_of_Sphagnum_fuscum_at_long-term_raised_CO2_concentrations
    [36] Hollingsworth T N, Schuur E A G, Chapin I F S, et al.Plant community composition as a predictor of regional soil carbon storage in alaskan boreal black spruce ecosystems[J].Ecosystems, 2008, 11(4):629-642. doi: 10.1007/s10021-008-9147-y
    [37] Davidson E A, Keller M, Erickson H E, et al.Testing a conceptual model of soil emissions of nitrous and nitric oxides[J].BioScience, 2000, 50(8):667-680. doi: 10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2
    [38] Phillips R, Beeri O.The role of hydropedologic vegetation zones in greenhouse gas emissions for agricultural wetland landscapes[J].Catena, 2008, 72(3):386-394. doi: 10.1016/j.catena.2007.07.007
    [39] 刘晓辉, 吕宪国.三江平原湿地生态系统固碳功能及其价值评估[J].湿地科学, 2008, 6(2):212-217. http://d.old.wanfangdata.com.cn/Periodical/shidkx200802018
    [40] Harter S K, Mitsch W J.Patterns of short-term sedimentation in a freshwater created marsh[J].Journal of Environmental Quality, 2003, 32(1):325-334. doi: 10.2134/jeq2003.3250
    [41] Cahooni R D, Turner R E.Accretion and canal impacts in a rapidly subsiding wetland:Ⅱ.feldspar marker horizon technique[J].Estuaries, 1989, 12(4):260-268. doi: 10.2307/1351905
    [42] 付彬, 卜兆君, 王升忠.两种泥炭藓种群年龄结构与生长特征的对比分析[J].湿地科学, 2005, 3(3):288-299. http://d.old.wanfangdata.com.cn/Periodical/shidkx200503006
    [43] Trettin C C, Song B, Jurgensen M F, et al.Existing soil carbon models do not apply to forested wetlands[M].Cambridge, Massachusetts:CAB International, 2006:10-23.
    [44] Zhang Y, Li C, Trettin C C, et al.An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems[J].Global Biogeochem Cycles, 2002, 16(4):1061-1073. doi: 10.1029-2001GB001838/
    [45] Cui J, Li C, Trettin C.Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model[J].Global Change Biology, 2005, 11(2):278-289. doi: 10.1111/gcb.2005.11.issue-2
    [46] Goulden M L, Munger J W, Fan S, et al.Measurements of carbon sequestration by long-term eddy covariance:methods and a critical evaluation of accuracy[J].Global Change Biology, 1996, 2(3):169-182. doi: 10.1111/gcb.1996.2.issue-3
    [47] 顾永剑, 高宇, 郭海强, 等.崇明东滩湿地生态系统碳通量贡献区分析[J].复旦大学学报:自然科学版, 2008, 47(3):374-379. http://d.old.wanfangdata.com.cn/Periodical/fdxb200803017
    [48] Lloyd C R.Annual carbon balance of a managed wetland meadow in the Somerset levels, UK[J].Agricultural and Forest Meteorology, 2006, 138(1/4):168-179. doi: 10.1016-j.agrformet.2006.04.005/
    [49] Sulman B N, Desai A R, Cook B D, et al.Contrasting carbon dioxide fluxes between a drying shrub wetland in Northern Wisconsin, USA, and nearby forests[J].Biogeosciences, 2009, 6(6):1115-1126. doi: 10.5194/bg-6-1115-2009
    [50] Backstrand K, Crill P M, Jackowicz K M, et al.Annual carbon gas budget for a subarctic peatland, Northern Sweden[J].Biogeosciences, 2009, 6(3):5705-5740. doi: 10.5194/bgd-6-5705-2009
    [51] Wieder R K.Past, present, and future peatland carbon balance:an empirical model based on 210Pb-datedc ores[J].Ecological Applications, 2001, 11(2):327-342. http://www.jstor.org/stable/3060892
    [52] 严平, 董光荣, 张信宝, 等.137Cs法测定青藏高原土壤风蚀的初步结果[J].科学通报, 2000, 45(2):45-55. http://www.cnki.com.cn/Article/CJFDTotal-KXTB200002017.htm
    [53] Luo Y Q, Weng E S, Wu X W, et al.Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models[J].Ecological Applications, 2009, 19(3):571-574. doi: 10.1890/08-0561.1
    [54] Williams M, Schwarz P A, Law B E, et al.An improved analysis of forest carbon dynamics using data assimilation[J].Global Change Biology, 2005, 11(1):89-105 doi: 10.1111/gcb.2005.11.issue-1
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  28
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-16
  • 刊出日期:  2011-12-01

目录

    /

    返回文章
    返回