• 中国中文核心期刊
  • 中国农林核心期刊
  • 中国期刊方阵双效期刊
  • RCCSE中国核心学术期刊
  • 中国科学引文数据库(核心库)来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

林火碳排放研究进展

殷丽 田晓瑞 康磊 王浩

殷丽, 田晓瑞, 康磊, 王浩. 林火碳排放研究进展[J]. 世界林业研究, 2009, 22(3): 46-51.
引用本文: 殷丽, 田晓瑞, 康磊, 王浩. 林火碳排放研究进展[J]. 世界林业研究, 2009, 22(3): 46-51.
Li Yin, Xiaorui Tian, Lei Kang, Hao Wan. Research Development of Carbon Emissions from Forest Fires[J]. WORLD FORESTRY RESEARCH, 2009, 22(3): 46-51.
Citation: Li Yin, Xiaorui Tian, Lei Kang, Hao Wan. Research Development of Carbon Emissions from Forest Fires[J]. WORLD FORESTRY RESEARCH, 2009, 22(3): 46-51.

林火碳排放研究进展

基金项目: 

国家自然科学基金 30671695

林业公益性行业科研专项经费 编号:2008040001

详细信息
    作者简介:

    殷丽(1983-), 中国林科院森林生态环境与保护研究所硕士研究生, 主要从事林火碳排放研究

    通讯作者:

    田晓瑞

  • 中图分类号: S762

Research Development of Carbon Emissions from Forest Fires

  • 摘要: 火是森林生态系统主要的干扰因子, 森林火灾的频繁发生不仅使森林生态系统遭到破坏, 同时也造成了含碳温室气体的大量释放。综述了火烧面积、森林可燃物以及燃烧效率等主要因子对森林火灾排放碳量估计的影响, 分析了这一领域未来研究发展趋势。大量研究表明:1)卫星遥感是估测大尺度上森林过火面积的主要手段, 随着高分辨率卫星的应用, 森林火灾面积的估计精度不断得到提高。目前的研究主要集中于大尺度上林火面积的估计和估算方法的改进。2)遥感数据是目前估计大尺度可燃物燃烧量的有效手段, 利用遥感数据的同时结合有效可燃物计算模型, 运用多元线性与非线性分析结合等方法提高对可燃物燃烧量的估计。3)燃烧效率是决定可燃物消耗量的主要因子, 也是估计森林火灾释放含碳气体量的关键。未来的研究是利用高分辨率的遥感数据, 结合复杂的可燃物计算模型, 更精确地估计林火碳排放。
  • 表  1  不同可燃物类型的最小和最大燃烧效率值

  • [1] Weber M G, Flannigan M D.Canadian boreal forest ecosystem structure and function in achanging climate:impact on fire regimes[J].Environmental Reviews, 1997(5):145-166. http://cogentoa.tandfonline.com/servlet/linkout?suffix=CIT0032&dbid=16&doi=10.1080%2F23311886.2015.1047564&key=10.1139%2Fa97-008
    [2] Bourgeau C, Alexander L L, Stocks M E, et al. Distribution of forest ecosystems and the role of fire in the North American boreal region[M]//Fire, climate change, and carbon cycling in the boreal forest. New York: Springer, 2000: 111-131.
    [3] Goldammer J G, Crutzen P J. Fire in the environment: scientific rational and summary of results of the Dahlem Workshop[M]//Fire in the environment: the ecology, atmospheric and climatic importance of vegetation firse. New York: springer, 1993: 1-14.
    [4] Crutzen P J, Andreae M O.Biomass burning in the tropics:impact on the atmospheric chemistry and biogeoch emical cycles[J].Science, 1990(250):1669-1678.
    [5] Amiro B D, Todd J B, Wotton B M.Direct carbon emissions from Canadian forest fires, 1959-1999[J].Canada Journal of Forest Research, 2001, 31:512-525. doi: 10.1139/x00-197
    [6] Cofer W R, Winstead E L.Crown fire emissions of CO2, CO, H2, CH4, and TNMHC from a dense jack pine boreal forest fire[J].Geophysical Research Letters, 1998, 25(21):3919-3922. doi: 10.1029/1998GL900042
    [7] 田晓瑞, 舒立福, 王明玉.1991-2000年中国森林火灾直接释放碳量估算[J].火灾科学, 2003(12):6-10. http://d.old.wanfangdata.com.cn/Periodical/hzkx200301002
    [8] Kasischke E S, Bruhwiler L P.Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998[J].Journal of Geophysical Research, 2002, 107:8146. doi: 10.1029-2002JA009386/
    [9] Van Der Werf G R.Carbon emission from fires in tropical and subtropical ecosysrems[J].Global Change Biology, 2003(9):547-562. https://www.researchgate.net/publication/43291809_Carbon_emissions_from_fires_in_tropical_and_subtropical_ecosystems
    [10] Seiler W, Crutzen P J.Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning[J].Climate Change, 1980(2):207-248. doi: 10.1007-BF00137988/
    [11] Wang X K, Zhuang Y H, Feng Z W.Estimation of carbon-con taining gases released from forest fire[J].Advances In Environmental Science, 1998, 6(4):1-15.
    [12] Conard S G, lvanova G A.Wildfire in Russian boreal forests-poten tial impacts of fire regime characteristics on emissions and global carbon balance estimates[J].Environ Pollut, 1997, 98(3):305-313. doi: 10.1016/S0269-7491(97)00140-1
    [13] 易浩若, 纪平.森林过火面积的遥感测算方法[J].遥感技术与应用, 1998, 13(2):10-14. doi: 10.3969/j.issn.1004-0323.1998.02.002
    [14] 苏力华, 楼玫娟, 等.气象卫星遥感监测在森林防火中的应用[J].西北农林科技大学学报, 2004(32):85-88. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb200411020
    [15] Riano D, Moreno J A.Global spatial patterns and temporal trends of burned area between 1981 and 2000 using NOAA-NASA Path finder[J].Global Change Biology, 2007(13):40-50. http://europepmc.org/abstract/AGR/IND43869166
    [16] 陈本清, 徐涵秋.遥感技术在森林火灾信息提取中的应用[J].福州大学学报, 2001, 29(2):23-26. doi: 10.3969/j.issn.1000-2243.2001.02.007
    [17] 张春贵.MODIS数据在南方丘陵地区局地森林火灾面积评估中的应用研究[J].应用气象学报, 2007(18):119-123. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb200701017
    [18] 催学明, 王林和, 等.MODIS及ASTER卫星数据在林火面积估算中的应用[J].干旱区资源与环境, 2008, 22(1):198-200. doi: 10.3969/j.issn.1003-7578.2008.01.039
    [19] Li Z, Nadon S, Cihlar J.Satellite mapping of Canadian boreal forest fires:evaluation and comparison of algorithms[J].Remote Sense, 2000(21):3071-3082. doi: 10.1109-TCPMT.2011.2162069/
    [20] 刘诚, 李亚军, 赵长海, 等.气象卫星亚像元火点面积和亮温估算方法[J].应用气象学报, 2004, 15(3):274-280. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb200403003
    [21] Potter C, Genovese V B, Klooster S.Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region[J].Atmosphere Environment, 2001, 35:1773-1781. doi: 10.1016/S1352-2310(00)00459-3
    [22] Zhang Y H, Wooster M J.Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT[J].Remote Sensing of Environment, 2003, 87(1):1-15. doi: 10.1016/S0034-4257(03)00141-X
    [23] 张顺谦.利用遥感监测亚像元分解遗传算法估算森林火灾面积[J].中国农业气象, 2007, 28(2):198-200. doi: 10.3969/j.issn.1000-6362.2007.02.021
    [24] Martin P, Girardin.Interannual to decadal changes in area burned in Canada from 1781 to 1982 and the relationship to Northern Hemisphere land temperatures[J].Global Ecology and Biogeography, 2007(16):557-566. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=835e8ac18196a7e6446f757d74626dbe
    [25] 王效科.森林火灾释放的含碳温室气体量的估计[J].环境科学进展, 1998(6):1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800234840
    [26] 李玉昆, 邓光瑞, 等.大兴安岭三种森林类型地表可燃物燃烧气体排放量的研究[J].林业科技, 2006, 31(6):28-31. http://d.old.wanfangdata.com.cn/Periodical/lykj200606010
    [27] 魏云敏.森林可燃物载量研究综述[J].林火研究, 2006(4):18-21. http://d.old.wanfangdata.com.cn/Periodical/slfh200604008
    [28] Olson J.Energy storage and the balance of producers and decomposers in ecological systems[J].Ecology, 1963, 44(2):322-330. doi: 10.2307/1932179
    [29] Schaaf M D. Development of the fire emissions tradeoff model(FETM) and application to the Grande Ronde River Basin, Oregon[R]. US Department of Agriculture, Forest Service, 1996: 53-82.
    [30] De Wasseige C, Defourny P.Retrieval of tropical forest structure characteristics from bidirectional reflectance of SPOT images[J].Rem Sens Environ, 2002, 83:362-375. doi: 10.1016/S0034-4257(02)00033-0
    [31] Ryu S. Effect of disturbances on fuel loading, fire-mosaic, and interactions in managed forest land scape[R]. United States: The University of Toledo, 2005: 141.
    [32] 郭志华, 彭少麟.利用GIS和Rs估算广东植被利用率[J].生态学报, 2000(6):903-909. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200006001
    [33] 王强. 利用遥感图像估测林下可燃物负荷量的研究[D]. 哈尔滨: 东北林业大学, 2005. http://cdmd.cnki.com.cn/article/cdmd-10225-2005136727.htm
    [34] Scott K, Oswald B, Farrish K, et al.Fuel lodading prediction models developed from aerial photographs of the Sangrede Cristo and Jemes mountains of New Mexico, USA[J].International Journal of Wildland Fire, 2002, 11(1):85-90. doi: 10.1071/WF01044
    [35] Skow ronski N, Clark K.Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey[J].Remote Sensing of Environment, 2007, 108(2):123-129. doi: 10.1016/j.rse.2006.09.032
    [36] 胡海清, 魏云敏.利用遥感影像和林分因子估测森林可燃物载量[J].东北林业大学学报, 2007, 35(6):18-20. doi: 10.3969/j.issn.1000-5382.2007.06.007
    [37] Choi S, Chang Y.Increase in carbon emissions from forest fires after in tensive reforestation and forest management programs[J].Science of the Total Environment, 2006, 372:225-235. doi: 10.1016/j.scitotenv.2006.09.024
    [38] 吕爱峰, 等.火干扰与生态系统的碳循环[J].生态学报, 2005(25):2737-2741. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200510040
    [39] Wong C S.Carbon input to the atmosphere from forest fires[J].Science, 1979:204-210. doi: 10.1126-science.204.4389.210/
    [40] Shvidenko A, Nilsson S.Fire and the carbon budget of Russian forests[M]//Fire climate change and carbon cycling in north American boreal forest.New York:Springer, 2000:289-311.
    [41] Lambin E F, Goyvaerts K, Petit C.Remotely-sensed indicators of burning efficiency of savannah and forest fires[J].International Journal of Remote Sensing, 1986, 24(15):3105-3118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c9dc9db68cf4bcdef956521b6904fbe
    [42] Graca.Burning of Amazonian forest in Ariquemes, Rondonia, Brazil: biomass, charcoal formation and burning efficiency[J].Forest Ecology and Management, 1999, 120(1-3):179-191. doi: 10.1016/S0378-1127(98)00547-7
    [43] Aulair A N D, Carter T B.Forest wild fires as a recent source of CO2 at northern latitudes[J].Canada Journal of Forest Research, 1993, 23:1528-1536. doi: 10.1139/x93-193
    [44] Ward D E, Susott R A, Kauffman J B, et al. Smoke and fire characteristics for cerrado and deforestation burns in Brazil:BASE-B experiment[J].Geophysical Research, 1992, 97:14601-14619. doi: 10.1029/92JD01218
    [45] Van der Werf G R.Interannual variability of global biomass burning emissions from 1997 to 2004[J].Atmospheric Chemistry and Physics Discussion, 2006, 6:3175-3226. doi: 10.5194/acpd-6-3175-2006
    [46] 田晓瑞, 舒立福, 王明玉, 等.林火与气候变化研究进展[J].世界林业研究, 2006, 19(5):38-42. doi: 10.3969/j.issn.1001-4241.2006.05.007
    [47] Groisman P, Ya C. Contem porary climate changes in high latitudes of the Northern Hemisphere: daily time resolution[C]//AMS Prec. of the 14th Symposium on GlobalChange and Climate Variations, Long Beach, California, 2003, 2: 9-13
  • 加载中
表(1)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  60
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-22
  • 刊出日期:  2009-06-01

目录

    /

    返回文章
    返回